L(s) = 1 | − 2·2-s + 5·3-s − 4·4-s + 6·5-s − 10·6-s + 24·8-s − 2·9-s − 12·10-s + 34·11-s − 20·12-s + 57·13-s + 30·15-s − 16·16-s + 80·17-s + 4·18-s + 70·19-s − 24·20-s − 68·22-s + 23·23-s + 120·24-s − 89·25-s − 114·26-s − 145·27-s + 245·29-s − 60·30-s − 103·31-s − 160·32-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.962·3-s − 1/2·4-s + 0.536·5-s − 0.680·6-s + 1.06·8-s − 0.0740·9-s − 0.379·10-s + 0.931·11-s − 0.481·12-s + 1.21·13-s + 0.516·15-s − 1/4·16-s + 1.14·17-s + 0.0523·18-s + 0.845·19-s − 0.268·20-s − 0.658·22-s + 0.208·23-s + 1.02·24-s − 0.711·25-s − 0.859·26-s − 1.03·27-s + 1.56·29-s − 0.365·30-s − 0.596·31-s − 0.883·32-s + ⋯ |
Λ(s)=(=(1127s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1127s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.335057213 |
L(21) |
≈ |
2.335057213 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 23 | 1−pT |
good | 2 | 1+pT+p3T2 |
| 3 | 1−5T+p3T2 |
| 5 | 1−6T+p3T2 |
| 11 | 1−34T+p3T2 |
| 13 | 1−57T+p3T2 |
| 17 | 1−80T+p3T2 |
| 19 | 1−70T+p3T2 |
| 29 | 1−245T+p3T2 |
| 31 | 1+103T+p3T2 |
| 37 | 1+298T+p3T2 |
| 41 | 1+95T+p3T2 |
| 43 | 1−88T+p3T2 |
| 47 | 1−357T+p3T2 |
| 53 | 1+414T+p3T2 |
| 59 | 1−408T+p3T2 |
| 61 | 1+822T+p3T2 |
| 67 | 1−926T+p3T2 |
| 71 | 1−335T+p3T2 |
| 73 | 1−899T+p3T2 |
| 79 | 1+1322T+p3T2 |
| 83 | 1−36T+p3T2 |
| 89 | 1−460T+p3T2 |
| 97 | 1−964T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.347265278831962154468950862376, −8.684281858709870916057383361474, −8.145623811305591597253945961623, −7.26630819644795689272943644300, −6.11369006916397024376182009991, −5.21386695427852631264990455798, −3.90220371078706883594373918953, −3.23881356246909613405600607272, −1.77857451426639356592294516615, −0.921343067813029429220734352762,
0.921343067813029429220734352762, 1.77857451426639356592294516615, 3.23881356246909613405600607272, 3.90220371078706883594373918953, 5.21386695427852631264990455798, 6.11369006916397024376182009991, 7.26630819644795689272943644300, 8.145623811305591597253945961623, 8.684281858709870916057383361474, 9.347265278831962154468950862376