L(s) = 1 | + 2-s + 4-s − 3.73·5-s − 7-s + 8-s − 3.73·10-s + 4.19·11-s + 0.464·13-s − 14-s + 16-s − 7·17-s − 2.73·19-s − 3.73·20-s + 4.19·22-s − 6.19·23-s + 8.92·25-s + 0.464·26-s − 28-s − 8.46·29-s − 2.19·31-s + 32-s − 7·34-s + 3.73·35-s − 6.66·37-s − 2.73·38-s − 3.73·40-s − 9.46·41-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s − 1.66·5-s − 0.377·7-s + 0.353·8-s − 1.18·10-s + 1.26·11-s + 0.128·13-s − 0.267·14-s + 0.250·16-s − 1.69·17-s − 0.626·19-s − 0.834·20-s + 0.894·22-s − 1.29·23-s + 1.78·25-s + 0.0910·26-s − 0.188·28-s − 1.57·29-s − 0.394·31-s + 0.176·32-s − 1.20·34-s + 0.630·35-s − 1.09·37-s − 0.443·38-s − 0.590·40-s − 1.47·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + T \) |
good | 5 | \( 1 + 3.73T + 5T^{2} \) |
| 11 | \( 1 - 4.19T + 11T^{2} \) |
| 13 | \( 1 - 0.464T + 13T^{2} \) |
| 17 | \( 1 + 7T + 17T^{2} \) |
| 19 | \( 1 + 2.73T + 19T^{2} \) |
| 23 | \( 1 + 6.19T + 23T^{2} \) |
| 29 | \( 1 + 8.46T + 29T^{2} \) |
| 31 | \( 1 + 2.19T + 31T^{2} \) |
| 37 | \( 1 + 6.66T + 37T^{2} \) |
| 41 | \( 1 + 9.46T + 41T^{2} \) |
| 43 | \( 1 - 5.46T + 43T^{2} \) |
| 47 | \( 1 + 1.26T + 47T^{2} \) |
| 53 | \( 1 - 2.53T + 53T^{2} \) |
| 59 | \( 1 - 6.19T + 59T^{2} \) |
| 61 | \( 1 + 9.92T + 61T^{2} \) |
| 67 | \( 1 + 3.26T + 67T^{2} \) |
| 71 | \( 1 + 13.4T + 71T^{2} \) |
| 73 | \( 1 - 11.7T + 73T^{2} \) |
| 79 | \( 1 - 15.1T + 79T^{2} \) |
| 83 | \( 1 - 14.5T + 83T^{2} \) |
| 89 | \( 1 - 3.92T + 89T^{2} \) |
| 97 | \( 1 + 2.92T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.207135692349532420199214553518, −8.567860918077030616389573513678, −7.58938048544217216140004445826, −6.83580903220873777734978824021, −6.17325726335194061442348403962, −4.79036484471245917661873888650, −3.91150210175583802167136505912, −3.61666009803687336262678884369, −2.00739084460189131272843904705, 0,
2.00739084460189131272843904705, 3.61666009803687336262678884369, 3.91150210175583802167136505912, 4.79036484471245917661873888650, 6.17325726335194061442348403962, 6.83580903220873777734978824021, 7.58938048544217216140004445826, 8.567860918077030616389573513678, 9.207135692349532420199214553518