L(s) = 1 | − 3·2-s + 3·4-s − 5·5-s − 2·7-s + 2·8-s + 15·10-s − 11-s + 4·13-s + 6·14-s − 9·16-s − 4·17-s − 3·19-s − 15·20-s + 3·22-s − 7·23-s + 19·25-s − 12·26-s − 6·28-s + 10·29-s − 14·31-s + 9·32-s + 12·34-s + 10·35-s − 9·37-s + 9·38-s − 10·40-s + 24·41-s + ⋯ |
L(s) = 1 | − 2.12·2-s + 3/2·4-s − 2.23·5-s − 0.755·7-s + 0.707·8-s + 4.74·10-s − 0.301·11-s + 1.10·13-s + 1.60·14-s − 9/4·16-s − 0.970·17-s − 0.688·19-s − 3.35·20-s + 0.639·22-s − 1.45·23-s + 19/5·25-s − 2.35·26-s − 1.13·28-s + 1.85·29-s − 2.51·31-s + 1.59·32-s + 2.05·34-s + 1.69·35-s − 1.47·37-s + 1.45·38-s − 1.58·40-s + 3.74·41-s + ⋯ |
Λ(s)=(=((26⋅324⋅76)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((26⋅324⋅76)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.2891763130 |
L(21) |
≈ |
0.2891763130 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1+T+T2)3 |
| 3 | 1 |
| 7 | 1+2T−4T2−31T3−4pT4+2p2T5+p3T6 |
good | 5 | 1+pT+6T2+T3+31T4+68T5+29T6+68pT7+31p2T8+p3T9+6p4T10+p6T11+p6T12 |
| 11 | 1+T−6T2−103T3−83T4+32pT5+457pT6+32p2T7−83p2T8−103p3T9−6p4T10+p5T11+p6T12 |
| 13 | (1−2T+36T2−49T3+36pT4−2p2T5+p3T6)2 |
| 17 | 1+4T+9T2+92T3+58T4−20T5+5393T6−20pT7+58p2T8+92p3T9+9p4T10+4p5T11+p6T12 |
| 19 | 1+3T−42T2−61T3+69pT4+726T5−27501T6+726pT7+69p3T8−61p3T9−42p4T10+3p5T11+p6T12 |
| 23 | 1+7T−24T2−127T3+1417T4+3484T5−22393T6+3484pT7+1417p2T8−127p3T9−24p4T10+7p5T11+p6T12 |
| 29 | (1−5T+55T2−323T3+55pT4−5p2T5+p3T6)2 |
| 31 | 1+14T+58T2+250T3+2992T4+9728T5−11857T6+9728pT7+2992p2T8+250p3T9+58p4T10+14p5T11+p6T12 |
| 37 | 1+9T−21T2−268T3+1293T4+4875T5−42882T6+4875pT7+1293p2T8−268p3T9−21p4T10+9p5T11+p6T12 |
| 41 | (1−12T+162T2−1011T3+162pT4−12p2T5+p3T6)2 |
| 43 | (1+18T+210T2+1549T3+210pT4+18p2T5+p3T6)2 |
| 47 | 1−3T−108T2+267T3+7263T4−9786T5−360137T6−9786pT7+7263p2T8+267p3T9−108p4T10−3p5T11+p6T12 |
| 53 | 1−9T−36T2+873T3−1179T4−26334T5+272077T6−26334pT7−1179p2T8+873p3T9−36p4T10−9p5T11+p6T12 |
| 59 | 1−4T−60T2+994T3−1304T4−464pT5+7381pT6−464p2T7−1304p2T8+994p3T9−60p4T10−4p5T11+p6T12 |
| 61 | 1−4T−32T2−650T3+292T4+19532T5+306323T6+19532pT7+292p2T8−650p3T9−32p4T10−4p5T11+p6T12 |
| 67 | 1−5T−118T2+327T3+8263T4−1138T5−609341T6−1138pT7+8263p2T8+327p3T9−118p4T10−5p5T11+p6T12 |
| 71 | (1−7T+163T2−895T3+163pT4−7p2T5+p3T6)2 |
| 73 | 1+25T+254T2+2073T3+20533T4+115046T5+366817T6+115046pT7+20533p2T8+2073p3T9+254p4T10+25p5T11+p6T12 |
| 79 | 1−7T−44T2+19T3−1043T4+28016T5+109223T6+28016pT7−1043p2T8+19p3T9−44p4T10−7p5T11+p6T12 |
| 83 | (1+8T+244T2+1235T3+244pT4+8p2T5+p3T6)2 |
| 89 | 1+9T−180T2−729T3+31041T4+54846T5−2925911T6+54846pT7+31041p2T8−729p3T9−180p4T10+9p5T11+p6T12 |
| 97 | (1−28T+527T2−5968T3+527pT4−28p2T5+p3T6)2 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.19519306690671494788902375234, −4.96299467513367235472222762136, −4.79829197923494158258656653615, −4.66488255065249405452164573364, −4.58955964254241696566197830586, −4.19448576483144773271991219079, −4.01085434130402708205454344513, −4.00584817743247724348132592096, −3.96751819356929634599813853955, −3.87694579987052817482251669890, −3.43342364269552035684143509852, −3.37364665683261707268066279128, −3.08866653232063457091120657261, −3.07625436060763517994838722589, −2.88533625539755533063736273890, −2.35686388516774258797555001776, −2.27646545032197456526097968464, −2.15340400706614926263789008071, −1.95596056654158531996416925831, −1.39629836555097936674248722684, −1.33172345444547014894403688882, −1.25383323382634493220320263644, −0.49050841873831015182161904990, −0.41508531589434567343333966809, −0.39272297397854271238514644703,
0.39272297397854271238514644703, 0.41508531589434567343333966809, 0.49050841873831015182161904990, 1.25383323382634493220320263644, 1.33172345444547014894403688882, 1.39629836555097936674248722684, 1.95596056654158531996416925831, 2.15340400706614926263789008071, 2.27646545032197456526097968464, 2.35686388516774258797555001776, 2.88533625539755533063736273890, 3.07625436060763517994838722589, 3.08866653232063457091120657261, 3.37364665683261707268066279128, 3.43342364269552035684143509852, 3.87694579987052817482251669890, 3.96751819356929634599813853955, 4.00584817743247724348132592096, 4.01085434130402708205454344513, 4.19448576483144773271991219079, 4.58955964254241696566197830586, 4.66488255065249405452164573364, 4.79829197923494158258656653615, 4.96299467513367235472222762136, 5.19519306690671494788902375234
Plot not available for L-functions of degree greater than 10.