L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.230 + 0.398i)5-s + (−2.32 + 1.26i)7-s + 0.999·8-s + (0.230 − 0.398i)10-s + (1.82 − 3.15i)11-s − 1.46·13-s + (2.25 + 1.38i)14-s + (−0.5 − 0.866i)16-s + (−1.86 + 3.23i)17-s + (−2.02 − 3.51i)19-s − 0.460·20-s − 3.64·22-s + (−0.566 − 0.981i)23-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.102 + 0.178i)5-s + (−0.878 + 0.478i)7-s + 0.353·8-s + (0.0728 − 0.126i)10-s + (0.549 − 0.952i)11-s − 0.405·13-s + (0.603 + 0.368i)14-s + (−0.125 − 0.216i)16-s + (−0.452 + 0.784i)17-s + (−0.465 − 0.805i)19-s − 0.102·20-s − 0.777·22-s + (−0.118 − 0.204i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.574 + 0.818i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.574 + 0.818i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7990962399\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7990962399\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.32 - 1.26i)T \) |
good | 5 | \( 1 + (-0.230 - 0.398i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.82 + 3.15i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 1.46T + 13T^{2} \) |
| 17 | \( 1 + (1.86 - 3.23i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.02 + 3.51i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.566 + 0.981i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 8.97T + 29T^{2} \) |
| 31 | \( 1 + (-0.257 + 0.445i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.55 + 7.88i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 0.945T + 41T^{2} \) |
| 43 | \( 1 + 9.32T + 43T^{2} \) |
| 47 | \( 1 + (1.16 + 2.01i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.21 + 10.7i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.44 + 11.1i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.04 + 10.4i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.16 + 2.00i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 1.67T + 71T^{2} \) |
| 73 | \( 1 + (6.62 - 11.4i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.50 - 4.33i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 6.64T + 83T^{2} \) |
| 89 | \( 1 + (1.36 + 2.36i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 11.1T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.621004341105030715166194494771, −8.644240158644945047176214270723, −8.380054230551556400592415574403, −6.78439226911131595715010736153, −6.43196961011825598775704146582, −5.19519306690671494788902375234, −4.00584817743247724348132592096, −3.07625436060763517994838722589, −2.15340400706614926263789008071, −0.41508531589434567343333966809,
1.33172345444547014894403688882, 2.88533625539755533063736273890, 4.19448576483144773271991219079, 4.96299467513367235472222762136, 6.14085776457858723784441079590, 6.88601878420812743251630708524, 7.40378649262646684649841589186, 8.555801165934233218999919145966, 9.248191055705522846102719016229, 10.05604508814928196186744945862