L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.230 + 0.398i)5-s + (−2.32 + 1.26i)7-s + 0.999·8-s + (0.230 − 0.398i)10-s + (1.82 − 3.15i)11-s − 1.46·13-s + (2.25 + 1.38i)14-s + (−0.5 − 0.866i)16-s + (−1.86 + 3.23i)17-s + (−2.02 − 3.51i)19-s − 0.460·20-s − 3.64·22-s + (−0.566 − 0.981i)23-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.102 + 0.178i)5-s + (−0.878 + 0.478i)7-s + 0.353·8-s + (0.0728 − 0.126i)10-s + (0.549 − 0.952i)11-s − 0.405·13-s + (0.603 + 0.368i)14-s + (−0.125 − 0.216i)16-s + (−0.452 + 0.784i)17-s + (−0.465 − 0.805i)19-s − 0.102·20-s − 0.777·22-s + (−0.118 − 0.204i)23-s + ⋯ |
Λ(s)=(=(1134s/2ΓC(s)L(s)(−0.574+0.818i)Λ(2−s)
Λ(s)=(=(1134s/2ΓC(s+1/2)L(s)(−0.574+0.818i)Λ(1−s)
Degree: |
2 |
Conductor: |
1134
= 2⋅34⋅7
|
Sign: |
−0.574+0.818i
|
Analytic conductor: |
9.05503 |
Root analytic conductor: |
3.00915 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1134(487,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1134, ( :1/2), −0.574+0.818i)
|
Particular Values
L(1) |
≈ |
0.7990962399 |
L(21) |
≈ |
0.7990962399 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 3 | 1 |
| 7 | 1+(2.32−1.26i)T |
good | 5 | 1+(−0.230−0.398i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−1.82+3.15i)T+(−5.5−9.52i)T2 |
| 13 | 1+1.46T+13T2 |
| 17 | 1+(1.86−3.23i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2.02+3.51i)T+(−9.5+16.4i)T2 |
| 23 | 1+(0.566+0.981i)T+(−11.5+19.9i)T2 |
| 29 | 1−8.97T+29T2 |
| 31 | 1+(−0.257+0.445i)T+(−15.5−26.8i)T2 |
| 37 | 1+(4.55+7.88i)T+(−18.5+32.0i)T2 |
| 41 | 1−0.945T+41T2 |
| 43 | 1+9.32T+43T2 |
| 47 | 1+(1.16+2.01i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−6.21+10.7i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−6.44+11.1i)T+(−29.5−51.0i)T2 |
| 61 | 1+(6.04+10.4i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−1.16+2.00i)T+(−33.5−58.0i)T2 |
| 71 | 1−1.67T+71T2 |
| 73 | 1+(6.62−11.4i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−2.50−4.33i)T+(−39.5+68.4i)T2 |
| 83 | 1+6.64T+83T2 |
| 89 | 1+(1.36+2.36i)T+(−44.5+77.0i)T2 |
| 97 | 1−11.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.621004341105030715166194494771, −8.644240158644945047176214270723, −8.380054230551556400592415574403, −6.78439226911131595715010736153, −6.43196961011825598775704146582, −5.19519306690671494788902375234, −4.00584817743247724348132592096, −3.07625436060763517994838722589, −2.15340400706614926263789008071, −0.41508531589434567343333966809,
1.33172345444547014894403688882, 2.88533625539755533063736273890, 4.19448576483144773271991219079, 4.96299467513367235472222762136, 6.14085776457858723784441079590, 6.88601878420812743251630708524, 7.40378649262646684649841589186, 8.555801165934233218999919145966, 9.248191055705522846102719016229, 10.05604508814928196186744945862