L(s) = 1 | + i·2-s − 4-s + (−2.09 − 3.62i)5-s + (2.62 + 0.358i)7-s − i·8-s + (3.62 − 2.09i)10-s + (−2.59 − 1.5i)11-s + (−2.12 − 1.22i)13-s + (−0.358 + 2.62i)14-s + 16-s + (0.507 + 0.878i)17-s + (−0.878 − 0.507i)19-s + (2.09 + 3.62i)20-s + (1.5 − 2.59i)22-s + (−3.67 + 2.12i)23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + (−0.935 − 1.61i)5-s + (0.990 + 0.135i)7-s − 0.353i·8-s + (1.14 − 0.661i)10-s + (−0.783 − 0.452i)11-s + (−0.588 − 0.339i)13-s + (−0.0958 + 0.700i)14-s + 0.250·16-s + (0.123 + 0.213i)17-s + (−0.201 − 0.116i)19-s + (0.467 + 0.809i)20-s + (0.319 − 0.553i)22-s + (−0.766 + 0.442i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.906 + 0.421i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.906 + 0.421i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2660506786\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2660506786\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2.62 - 0.358i)T \) |
good | 5 | \( 1 + (2.09 + 3.62i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (2.59 + 1.5i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2.12 + 1.22i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.507 - 0.878i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.878 + 0.507i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.67 - 2.12i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.07 - 0.621i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 5.61iT - 31T^{2} \) |
| 37 | \( 1 + (4.12 - 7.13i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.01 + 1.75i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.12 + 7.13i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 1.01T + 47T^{2} \) |
| 53 | \( 1 + (1.07 - 0.621i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 11.5T + 59T^{2} \) |
| 61 | \( 1 + 5.91iT - 61T^{2} \) |
| 67 | \( 1 + 10T + 67T^{2} \) |
| 71 | \( 1 + 10.2iT - 71T^{2} \) |
| 73 | \( 1 + (-7.24 + 4.18i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + 11.2T + 79T^{2} \) |
| 83 | \( 1 + (1.58 + 2.74i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (5.19 - 9i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.25 + 1.88i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.057735977234583343623164254815, −8.433935992056534932232414066968, −7.962095170430365050677553378769, −7.30955123638238492602129073186, −5.81730152398410375380586127258, −5.02707678388376363398979926814, −4.64042537644860896572174980636, −3.46234660159862381242652839647, −1.57051582136444603426182023095, −0.11513540247021591870807620007,
2.06645675662271556107697841396, 2.84611754520478950508908171987, 3.98547222731230120802370385321, 4.67036738302943584160667344377, 5.94716973411456240358932183012, 7.16110005790491111263008568935, 7.66330760412475570306797010236, 8.355450291174159869264028357633, 9.681333101138082574682831751941, 10.40105060805185953924281934852