L(s) = 1 | − 2.37i·2-s − 1.95i·3-s − 3.66·4-s + (0.479 + 2.18i)5-s − 4.66·6-s − 2.28i·7-s + 3.95i·8-s − 0.840·9-s + (5.19 − 1.14i)10-s + 1.12·11-s + 7.17i·12-s + 5.95i·13-s − 5.43·14-s + (4.27 − 0.940i)15-s + 2.09·16-s − 5.80i·17-s + ⋯ |
L(s) = 1 | − 1.68i·2-s − 1.13i·3-s − 1.83·4-s + (0.214 + 0.976i)5-s − 1.90·6-s − 0.863i·7-s + 1.39i·8-s − 0.280·9-s + (1.64 − 0.361i)10-s + 0.338·11-s + 2.07i·12-s + 1.65i·13-s − 1.45·14-s + (1.10 − 0.242i)15-s + 0.523·16-s − 1.40i·17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(−0.976+0.214i)Λ(2−s)
Λ(s)=(=(115s/2ΓC(s+1/2)L(s)(−0.976+0.214i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
−0.976+0.214i
|
Analytic conductor: |
0.918279 |
Root analytic conductor: |
0.958269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(24,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :1/2), −0.976+0.214i)
|
Particular Values
L(1) |
≈ |
0.108893−1.00305i |
L(21) |
≈ |
0.108893−1.00305i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.479−2.18i)T |
| 23 | 1+iT |
good | 2 | 1+2.37iT−2T2 |
| 3 | 1+1.95iT−3T2 |
| 7 | 1+2.28iT−7T2 |
| 11 | 1−1.12T+11T2 |
| 13 | 1−5.95iT−13T2 |
| 17 | 1+5.80iT−17T2 |
| 19 | 1−4.08T+19T2 |
| 29 | 1−0.408T+29T2 |
| 31 | 1+3.19T+31T2 |
| 37 | 1−9.80iT−37T2 |
| 41 | 1−6.27T+41T2 |
| 43 | 1−7.75iT−43T2 |
| 47 | 1−6.40iT−47T2 |
| 53 | 1+6.73iT−53T2 |
| 59 | 1−4.75T+59T2 |
| 61 | 1+6.33T+61T2 |
| 67 | 1+0.283iT−67T2 |
| 71 | 1+13.9T+71T2 |
| 73 | 1−9.61iT−73T2 |
| 79 | 1+4.48T+79T2 |
| 83 | 1+10.8iT−83T2 |
| 89 | 1+5.68T+89T2 |
| 97 | 1+11.0iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.01594372965946494867125097818, −11.68780640141083658914923861794, −11.44687200453004858254690928588, −10.11003503590055307712284487832, −9.299929702622690237451935480432, −7.42847407166445297181581665105, −6.64728380596904064174942250890, −4.32929558696145820560478787902, −2.83555660150489837730819040837, −1.42939676877140458490427123424,
3.99893594056389816868909038101, 5.38005674754705759608137432761, 5.74132543623244504221758195139, 7.63989835367976680665340664785, 8.700506251679590464744058463536, 9.336111704148776990172713578344, 10.51656850836679121150672956589, 12.34488318098791564667308873126, 13.25664624055274704126806561614, 14.58474084123959755208240556738