L(s) = 1 | + (2.29 + 2.29i)2-s + (−2.60 + 2.60i)3-s + 6.55i·4-s + (4.64 + 1.84i)5-s − 11.9·6-s + (−4.55 − 4.55i)7-s + (−5.88 + 5.88i)8-s − 4.54i·9-s + (6.42 + 14.9i)10-s + 0.500·11-s + (−17.0 − 17.0i)12-s + (6.17 − 6.17i)13-s − 20.9i·14-s + (−16.8 + 7.27i)15-s − 0.789·16-s + (1.49 + 1.49i)17-s + ⋯ |
L(s) = 1 | + (1.14 + 1.14i)2-s + (−0.867 + 0.867i)3-s + 1.63i·4-s + (0.929 + 0.369i)5-s − 1.99·6-s + (−0.650 − 0.650i)7-s + (−0.735 + 0.735i)8-s − 0.504i·9-s + (0.642 + 1.49i)10-s + 0.0455·11-s + (−1.42 − 1.42i)12-s + (0.475 − 0.475i)13-s − 1.49i·14-s + (−1.12 + 0.485i)15-s − 0.0493·16-s + (0.0876 + 0.0876i)17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(−0.819−0.573i)Λ(3−s)
Λ(s)=(=(115s/2ΓC(s+1)L(s)(−0.819−0.573i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
−0.819−0.573i
|
Analytic conductor: |
3.13352 |
Root analytic conductor: |
1.77017 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(47,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :1), −0.819−0.573i)
|
Particular Values
L(23) |
≈ |
0.605573+1.92156i |
L(21) |
≈ |
0.605573+1.92156i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−4.64−1.84i)T |
| 23 | 1+(3.39−3.39i)T |
good | 2 | 1+(−2.29−2.29i)T+4iT2 |
| 3 | 1+(2.60−2.60i)T−9iT2 |
| 7 | 1+(4.55+4.55i)T+49iT2 |
| 11 | 1−0.500T+121T2 |
| 13 | 1+(−6.17+6.17i)T−169iT2 |
| 17 | 1+(−1.49−1.49i)T+289iT2 |
| 19 | 1−21.0iT−361T2 |
| 29 | 1+43.1iT−841T2 |
| 31 | 1−57.0T+961T2 |
| 37 | 1+(13.6+13.6i)T+1.36e3iT2 |
| 41 | 1−31.0T+1.68e3T2 |
| 43 | 1+(40.9−40.9i)T−1.84e3iT2 |
| 47 | 1+(60.7+60.7i)T+2.20e3iT2 |
| 53 | 1+(−0.965+0.965i)T−2.80e3iT2 |
| 59 | 1+1.59iT−3.48e3T2 |
| 61 | 1+14.5T+3.72e3T2 |
| 67 | 1+(91.2+91.2i)T+4.48e3iT2 |
| 71 | 1+72.1T+5.04e3T2 |
| 73 | 1+(−59.6+59.6i)T−5.32e3iT2 |
| 79 | 1+80.4iT−6.24e3T2 |
| 83 | 1+(45.6−45.6i)T−6.88e3iT2 |
| 89 | 1−61.2iT−7.92e3T2 |
| 97 | 1+(−112.−112.i)T+9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.71752692587925909305624501341, −13.21811333466877564535935779028, −11.86747655485967929579170704089, −10.42398247536629833343811542820, −9.885821292772197936160154802992, −7.908748814163412429453999921872, −6.41416243908149227384811226263, −5.93283312396439288212737163977, −4.76675738186697047168328761327, −3.53937655759855208910174642658,
1.35214992675166087079776376684, 2.84002486938633519663327937026, 4.80972827599538769499566603189, 5.87797397489246305358604258043, 6.65635870945101280477359824442, 8.938028308152661614331890559628, 10.13273594269713157401044574120, 11.30406890598833589371230687248, 12.09177508792894422296116566224, 12.84091301731222931393417299294