L(s) = 1 | + (−1.95 − 1.95i)2-s + (−0.210 + 0.210i)3-s + 3.61i·4-s + (4.62 + 1.89i)5-s + 0.820·6-s + (2.37 + 2.37i)7-s + (−0.749 + 0.749i)8-s + 8.91i·9-s + (−5.31 − 12.7i)10-s + 12.6·11-s + (−0.760 − 0.760i)12-s + (10.8 − 10.8i)13-s − 9.25i·14-s + (−1.37 + 0.573i)15-s + 17.3·16-s + (−15.9 − 15.9i)17-s + ⋯ |
L(s) = 1 | + (−0.975 − 0.975i)2-s + (−0.0700 + 0.0700i)3-s + 0.904i·4-s + (0.925 + 0.379i)5-s + 0.136·6-s + (0.338 + 0.338i)7-s + (−0.0936 + 0.0936i)8-s + 0.990i·9-s + (−0.531 − 1.27i)10-s + 1.15·11-s + (−0.0633 − 0.0633i)12-s + (0.835 − 0.835i)13-s − 0.661i·14-s + (−0.0914 + 0.0382i)15-s + 1.08·16-s + (−0.940 − 0.940i)17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(0.813+0.582i)Λ(3−s)
Λ(s)=(=(115s/2ΓC(s+1)L(s)(0.813+0.582i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
0.813+0.582i
|
Analytic conductor: |
3.13352 |
Root analytic conductor: |
1.77017 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(47,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :1), 0.813+0.582i)
|
Particular Values
L(23) |
≈ |
0.956664−0.307203i |
L(21) |
≈ |
0.956664−0.307203i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−4.62−1.89i)T |
| 23 | 1+(−3.39+3.39i)T |
good | 2 | 1+(1.95+1.95i)T+4iT2 |
| 3 | 1+(0.210−0.210i)T−9iT2 |
| 7 | 1+(−2.37−2.37i)T+49iT2 |
| 11 | 1−12.6T+121T2 |
| 13 | 1+(−10.8+10.8i)T−169iT2 |
| 17 | 1+(15.9+15.9i)T+289iT2 |
| 19 | 1+0.760iT−361T2 |
| 29 | 1−42.2iT−841T2 |
| 31 | 1−37.1T+961T2 |
| 37 | 1+(−33.8−33.8i)T+1.36e3iT2 |
| 41 | 1+33.6T+1.68e3T2 |
| 43 | 1+(−5.27+5.27i)T−1.84e3iT2 |
| 47 | 1+(57.2+57.2i)T+2.20e3iT2 |
| 53 | 1+(36.4−36.4i)T−2.80e3iT2 |
| 59 | 1+22.9iT−3.48e3T2 |
| 61 | 1+89.6T+3.72e3T2 |
| 67 | 1+(−54.0−54.0i)T+4.48e3iT2 |
| 71 | 1−67.9T+5.04e3T2 |
| 73 | 1+(10.7−10.7i)T−5.32e3iT2 |
| 79 | 1+92.3iT−6.24e3T2 |
| 83 | 1+(−7.05+7.05i)T−6.88e3iT2 |
| 89 | 1+27.4iT−7.92e3T2 |
| 97 | 1+(27.7+27.7i)T+9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.14546073110867058303256045391, −11.71667142597259528229618209247, −10.97845851629786848924560299417, −10.16281019502451573087521227197, −9.143034006398008175225180262071, −8.285267362075964106796574322573, −6.56726192663553969405050752666, −5.15355806885957031895922207546, −2.89494194080091155416385096272, −1.54379055910652790973886531815,
1.27220418352267477200377503412, 4.13046505971364195242113765929, 6.32379681899621687667010493947, 6.42758063035731230439970773257, 8.171698007528709734773593771653, 9.127299310137227944041397550907, 9.679357440438611901388209441351, 11.18806887185687531441196914404, 12.43423235933009774611417788551, 13.65370827974727382569665790912