L(s) = 1 | + (−1.95 − 1.95i)2-s + (−0.210 + 0.210i)3-s + 3.61i·4-s + (4.62 + 1.89i)5-s + 0.820·6-s + (2.37 + 2.37i)7-s + (−0.749 + 0.749i)8-s + 8.91i·9-s + (−5.31 − 12.7i)10-s + 12.6·11-s + (−0.760 − 0.760i)12-s + (10.8 − 10.8i)13-s − 9.25i·14-s + (−1.37 + 0.573i)15-s + 17.3·16-s + (−15.9 − 15.9i)17-s + ⋯ |
L(s) = 1 | + (−0.975 − 0.975i)2-s + (−0.0700 + 0.0700i)3-s + 0.904i·4-s + (0.925 + 0.379i)5-s + 0.136·6-s + (0.338 + 0.338i)7-s + (−0.0936 + 0.0936i)8-s + 0.990i·9-s + (−0.531 − 1.27i)10-s + 1.15·11-s + (−0.0633 − 0.0633i)12-s + (0.835 − 0.835i)13-s − 0.661i·14-s + (−0.0914 + 0.0382i)15-s + 1.08·16-s + (−0.940 − 0.940i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.813 + 0.582i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.813 + 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.956664 - 0.307203i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.956664 - 0.307203i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-4.62 - 1.89i)T \) |
| 23 | \( 1 + (-3.39 + 3.39i)T \) |
good | 2 | \( 1 + (1.95 + 1.95i)T + 4iT^{2} \) |
| 3 | \( 1 + (0.210 - 0.210i)T - 9iT^{2} \) |
| 7 | \( 1 + (-2.37 - 2.37i)T + 49iT^{2} \) |
| 11 | \( 1 - 12.6T + 121T^{2} \) |
| 13 | \( 1 + (-10.8 + 10.8i)T - 169iT^{2} \) |
| 17 | \( 1 + (15.9 + 15.9i)T + 289iT^{2} \) |
| 19 | \( 1 + 0.760iT - 361T^{2} \) |
| 29 | \( 1 - 42.2iT - 841T^{2} \) |
| 31 | \( 1 - 37.1T + 961T^{2} \) |
| 37 | \( 1 + (-33.8 - 33.8i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 33.6T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-5.27 + 5.27i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (57.2 + 57.2i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (36.4 - 36.4i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + 22.9iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 89.6T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-54.0 - 54.0i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 67.9T + 5.04e3T^{2} \) |
| 73 | \( 1 + (10.7 - 10.7i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 92.3iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-7.05 + 7.05i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + 27.4iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (27.7 + 27.7i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.14546073110867058303256045391, −11.71667142597259528229618209247, −10.97845851629786848924560299417, −10.16281019502451573087521227197, −9.143034006398008175225180262071, −8.285267362075964106796574322573, −6.56726192663553969405050752666, −5.15355806885957031895922207546, −2.89494194080091155416385096272, −1.54379055910652790973886531815,
1.27220418352267477200377503412, 4.13046505971364195242113765929, 6.32379681899621687667010493947, 6.42758063035731230439970773257, 8.171698007528709734773593771653, 9.127299310137227944041397550907, 9.679357440438611901388209441351, 11.18806887185687531441196914404, 12.43423235933009774611417788551, 13.65370827974727382569665790912