Properties

Label 2-115-5.3-c2-0-6
Degree 22
Conductor 115115
Sign 0.9770.209i-0.977 - 0.209i
Analytic cond. 3.133523.13352
Root an. cond. 1.770171.77017
Motivic weight 22
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.74 + 2.74i)2-s + (3.72 + 3.72i)3-s − 11.0i·4-s + (4.51 + 2.14i)5-s − 20.4·6-s + (−2.87 + 2.87i)7-s + (19.4 + 19.4i)8-s + 18.7i·9-s + (−18.2 + 6.52i)10-s − 0.852·11-s + (41.3 − 41.3i)12-s + (−2.46 − 2.46i)13-s − 15.8i·14-s + (8.85 + 24.8i)15-s − 62.6·16-s + (4.78 − 4.78i)17-s + ⋯
L(s)  = 1  + (−1.37 + 1.37i)2-s + (1.24 + 1.24i)3-s − 2.77i·4-s + (0.903 + 0.428i)5-s − 3.41·6-s + (−0.410 + 0.410i)7-s + (2.43 + 2.43i)8-s + 2.08i·9-s + (−1.82 + 0.652i)10-s − 0.0775·11-s + (3.44 − 3.44i)12-s + (−0.189 − 0.189i)13-s − 1.12i·14-s + (0.590 + 1.65i)15-s − 3.91·16-s + (0.281 − 0.281i)17-s + ⋯

Functional equation

Λ(s)=(115s/2ΓC(s)L(s)=((0.9770.209i)Λ(3s)\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.977 - 0.209i)\, \overline{\Lambda}(3-s) \end{aligned}
Λ(s)=(115s/2ΓC(s+1)L(s)=((0.9770.209i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.977 - 0.209i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 115115    =    5235 \cdot 23
Sign: 0.9770.209i-0.977 - 0.209i
Analytic conductor: 3.133523.13352
Root analytic conductor: 1.770171.77017
Motivic weight: 22
Rational: no
Arithmetic: yes
Character: χ115(93,)\chi_{115} (93, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 115, ( :1), 0.9770.209i)(2,\ 115,\ (\ :1),\ -0.977 - 0.209i)

Particular Values

L(32)L(\frac{3}{2}) \approx 0.115970+1.09599i0.115970 + 1.09599i
L(12)L(\frac12) \approx 0.115970+1.09599i0.115970 + 1.09599i
L(2)L(2) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1+(4.512.14i)T 1 + (-4.51 - 2.14i)T
23 1+(3.39+3.39i)T 1 + (3.39 + 3.39i)T
good2 1+(2.742.74i)T4iT2 1 + (2.74 - 2.74i)T - 4iT^{2}
3 1+(3.723.72i)T+9iT2 1 + (-3.72 - 3.72i)T + 9iT^{2}
7 1+(2.872.87i)T49iT2 1 + (2.87 - 2.87i)T - 49iT^{2}
11 1+0.852T+121T2 1 + 0.852T + 121T^{2}
13 1+(2.46+2.46i)T+169iT2 1 + (2.46 + 2.46i)T + 169iT^{2}
17 1+(4.78+4.78i)T289iT2 1 + (-4.78 + 4.78i)T - 289iT^{2}
19 1+17.8iT361T2 1 + 17.8iT - 361T^{2}
29 1+32.6iT841T2 1 + 32.6iT - 841T^{2}
31 118.9T+961T2 1 - 18.9T + 961T^{2}
37 1+(12.712.7i)T1.36e3iT2 1 + (12.7 - 12.7i)T - 1.36e3iT^{2}
41 135.8T+1.68e3T2 1 - 35.8T + 1.68e3T^{2}
43 1+(22.9+22.9i)T+1.84e3iT2 1 + (22.9 + 22.9i)T + 1.84e3iT^{2}
47 1+(12.312.3i)T2.20e3iT2 1 + (12.3 - 12.3i)T - 2.20e3iT^{2}
53 1+(54.554.5i)T+2.80e3iT2 1 + (-54.5 - 54.5i)T + 2.80e3iT^{2}
59 1+29.2iT3.48e3T2 1 + 29.2iT - 3.48e3T^{2}
61 1+89.6T+3.72e3T2 1 + 89.6T + 3.72e3T^{2}
67 1+(49.4+49.4i)T4.48e3iT2 1 + (-49.4 + 49.4i)T - 4.48e3iT^{2}
71 150.3T+5.04e3T2 1 - 50.3T + 5.04e3T^{2}
73 1+(44.244.2i)T+5.32e3iT2 1 + (-44.2 - 44.2i)T + 5.32e3iT^{2}
79 1+109.iT6.24e3T2 1 + 109. iT - 6.24e3T^{2}
83 1+(2.16+2.16i)T+6.88e3iT2 1 + (2.16 + 2.16i)T + 6.88e3iT^{2}
89 1127.iT7.92e3T2 1 - 127. iT - 7.92e3T^{2}
97 1+(131.+131.i)T9.40e3iT2 1 + (-131. + 131. i)T - 9.40e3iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−14.22645337888585872344111070354, −13.62199041867082090417534549028, −10.84033884880063333899740373564, −9.958483852829000264812407021622, −9.436948108083321340632839349620, −8.677693669190336234992633762605, −7.56185082074291446325948104171, −6.19427271382875297219580440230, −4.94647002325435909015416157079, −2.52351684183889704783446769857, 1.20285157838158390777288015989, 2.26498282951109931363759480206, 3.52967904947834466225356395679, 6.77299970968908215572115246667, 7.87237534662338508764589348553, 8.697282259777986738264100409465, 9.549459589494558208605906587619, 10.37876730748015369959790034311, 12.00576376320682698525503822906, 12.75557640443402756846021778879

Graph of the ZZ-function along the critical line