L(s) = 1 | + (−2.74 + 2.74i)2-s + (3.72 + 3.72i)3-s − 11.0i·4-s + (4.51 + 2.14i)5-s − 20.4·6-s + (−2.87 + 2.87i)7-s + (19.4 + 19.4i)8-s + 18.7i·9-s + (−18.2 + 6.52i)10-s − 0.852·11-s + (41.3 − 41.3i)12-s + (−2.46 − 2.46i)13-s − 15.8i·14-s + (8.85 + 24.8i)15-s − 62.6·16-s + (4.78 − 4.78i)17-s + ⋯ |
L(s) = 1 | + (−1.37 + 1.37i)2-s + (1.24 + 1.24i)3-s − 2.77i·4-s + (0.903 + 0.428i)5-s − 3.41·6-s + (−0.410 + 0.410i)7-s + (2.43 + 2.43i)8-s + 2.08i·9-s + (−1.82 + 0.652i)10-s − 0.0775·11-s + (3.44 − 3.44i)12-s + (−0.189 − 0.189i)13-s − 1.12i·14-s + (0.590 + 1.65i)15-s − 3.91·16-s + (0.281 − 0.281i)17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(−0.977−0.209i)Λ(3−s)
Λ(s)=(=(115s/2ΓC(s+1)L(s)(−0.977−0.209i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
−0.977−0.209i
|
Analytic conductor: |
3.13352 |
Root analytic conductor: |
1.77017 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(93,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :1), −0.977−0.209i)
|
Particular Values
L(23) |
≈ |
0.115970+1.09599i |
L(21) |
≈ |
0.115970+1.09599i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−4.51−2.14i)T |
| 23 | 1+(3.39+3.39i)T |
good | 2 | 1+(2.74−2.74i)T−4iT2 |
| 3 | 1+(−3.72−3.72i)T+9iT2 |
| 7 | 1+(2.87−2.87i)T−49iT2 |
| 11 | 1+0.852T+121T2 |
| 13 | 1+(2.46+2.46i)T+169iT2 |
| 17 | 1+(−4.78+4.78i)T−289iT2 |
| 19 | 1+17.8iT−361T2 |
| 29 | 1+32.6iT−841T2 |
| 31 | 1−18.9T+961T2 |
| 37 | 1+(12.7−12.7i)T−1.36e3iT2 |
| 41 | 1−35.8T+1.68e3T2 |
| 43 | 1+(22.9+22.9i)T+1.84e3iT2 |
| 47 | 1+(12.3−12.3i)T−2.20e3iT2 |
| 53 | 1+(−54.5−54.5i)T+2.80e3iT2 |
| 59 | 1+29.2iT−3.48e3T2 |
| 61 | 1+89.6T+3.72e3T2 |
| 67 | 1+(−49.4+49.4i)T−4.48e3iT2 |
| 71 | 1−50.3T+5.04e3T2 |
| 73 | 1+(−44.2−44.2i)T+5.32e3iT2 |
| 79 | 1+109.iT−6.24e3T2 |
| 83 | 1+(2.16+2.16i)T+6.88e3iT2 |
| 89 | 1−127.iT−7.92e3T2 |
| 97 | 1+(−131.+131.i)T−9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.22645337888585872344111070354, −13.62199041867082090417534549028, −10.84033884880063333899740373564, −9.958483852829000264812407021622, −9.436948108083321340632839349620, −8.677693669190336234992633762605, −7.56185082074291446325948104171, −6.19427271382875297219580440230, −4.94647002325435909015416157079, −2.52351684183889704783446769857,
1.20285157838158390777288015989, 2.26498282951109931363759480206, 3.52967904947834466225356395679, 6.77299970968908215572115246667, 7.87237534662338508764589348553, 8.697282259777986738264100409465, 9.549459589494558208605906587619, 10.37876730748015369959790034311, 12.00576376320682698525503822906, 12.75557640443402756846021778879