L(s) = 1 | + (−2.74 + 2.74i)2-s + (3.72 + 3.72i)3-s − 11.0i·4-s + (4.51 + 2.14i)5-s − 20.4·6-s + (−2.87 + 2.87i)7-s + (19.4 + 19.4i)8-s + 18.7i·9-s + (−18.2 + 6.52i)10-s − 0.852·11-s + (41.3 − 41.3i)12-s + (−2.46 − 2.46i)13-s − 15.8i·14-s + (8.85 + 24.8i)15-s − 62.6·16-s + (4.78 − 4.78i)17-s + ⋯ |
L(s) = 1 | + (−1.37 + 1.37i)2-s + (1.24 + 1.24i)3-s − 2.77i·4-s + (0.903 + 0.428i)5-s − 3.41·6-s + (−0.410 + 0.410i)7-s + (2.43 + 2.43i)8-s + 2.08i·9-s + (−1.82 + 0.652i)10-s − 0.0775·11-s + (3.44 − 3.44i)12-s + (−0.189 − 0.189i)13-s − 1.12i·14-s + (0.590 + 1.65i)15-s − 3.91·16-s + (0.281 − 0.281i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.977 - 0.209i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.977 - 0.209i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.115970 + 1.09599i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.115970 + 1.09599i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-4.51 - 2.14i)T \) |
| 23 | \( 1 + (3.39 + 3.39i)T \) |
good | 2 | \( 1 + (2.74 - 2.74i)T - 4iT^{2} \) |
| 3 | \( 1 + (-3.72 - 3.72i)T + 9iT^{2} \) |
| 7 | \( 1 + (2.87 - 2.87i)T - 49iT^{2} \) |
| 11 | \( 1 + 0.852T + 121T^{2} \) |
| 13 | \( 1 + (2.46 + 2.46i)T + 169iT^{2} \) |
| 17 | \( 1 + (-4.78 + 4.78i)T - 289iT^{2} \) |
| 19 | \( 1 + 17.8iT - 361T^{2} \) |
| 29 | \( 1 + 32.6iT - 841T^{2} \) |
| 31 | \( 1 - 18.9T + 961T^{2} \) |
| 37 | \( 1 + (12.7 - 12.7i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 - 35.8T + 1.68e3T^{2} \) |
| 43 | \( 1 + (22.9 + 22.9i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (12.3 - 12.3i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (-54.5 - 54.5i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + 29.2iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 89.6T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-49.4 + 49.4i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 50.3T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-44.2 - 44.2i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 109. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (2.16 + 2.16i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 127. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-131. + 131. i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.22645337888585872344111070354, −13.62199041867082090417534549028, −10.84033884880063333899740373564, −9.958483852829000264812407021622, −9.436948108083321340632839349620, −8.677693669190336234992633762605, −7.56185082074291446325948104171, −6.19427271382875297219580440230, −4.94647002325435909015416157079, −2.52351684183889704783446769857,
1.20285157838158390777288015989, 2.26498282951109931363759480206, 3.52967904947834466225356395679, 6.77299970968908215572115246667, 7.87237534662338508764589348553, 8.697282259777986738264100409465, 9.549459589494558208605906587619, 10.37876730748015369959790034311, 12.00576376320682698525503822906, 12.75557640443402756846021778879