Properties

Label 2-115-5.3-c2-0-19
Degree 22
Conductor 115115
Sign 0.660+0.750i-0.660 + 0.750i
Analytic cond. 3.133523.13352
Root an. cond. 1.770171.77017
Motivic weight 22
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.63 − 2.63i)2-s + (−0.614 − 0.614i)3-s − 9.92i·4-s + (−4.07 + 2.89i)5-s − 3.24·6-s + (1.62 − 1.62i)7-s + (−15.6 − 15.6i)8-s − 8.24i·9-s + (−3.12 + 18.3i)10-s + 12.6·11-s + (−6.09 + 6.09i)12-s + (13.1 + 13.1i)13-s − 8.57i·14-s + (4.28 + 0.728i)15-s − 42.7·16-s + (2.73 − 2.73i)17-s + ⋯
L(s)  = 1  + (1.31 − 1.31i)2-s + (−0.204 − 0.204i)3-s − 2.48i·4-s + (−0.815 + 0.578i)5-s − 0.540·6-s + (0.232 − 0.232i)7-s + (−1.95 − 1.95i)8-s − 0.916i·9-s + (−0.312 + 1.83i)10-s + 1.15·11-s + (−0.507 + 0.507i)12-s + (1.01 + 1.01i)13-s − 0.612i·14-s + (0.285 + 0.0485i)15-s − 2.67·16-s + (0.161 − 0.161i)17-s + ⋯

Functional equation

Λ(s)=(115s/2ΓC(s)L(s)=((0.660+0.750i)Λ(3s)\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.660 + 0.750i)\, \overline{\Lambda}(3-s) \end{aligned}
Λ(s)=(115s/2ΓC(s+1)L(s)=((0.660+0.750i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.660 + 0.750i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 115115    =    5235 \cdot 23
Sign: 0.660+0.750i-0.660 + 0.750i
Analytic conductor: 3.133523.13352
Root analytic conductor: 1.770171.77017
Motivic weight: 22
Rational: no
Arithmetic: yes
Character: χ115(93,)\chi_{115} (93, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 115, ( :1), 0.660+0.750i)(2,\ 115,\ (\ :1),\ -0.660 + 0.750i)

Particular Values

L(32)L(\frac{3}{2}) \approx 0.9356302.07072i0.935630 - 2.07072i
L(12)L(\frac12) \approx 0.9356302.07072i0.935630 - 2.07072i
L(2)L(2) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1+(4.072.89i)T 1 + (4.07 - 2.89i)T
23 1+(3.393.39i)T 1 + (-3.39 - 3.39i)T
good2 1+(2.63+2.63i)T4iT2 1 + (-2.63 + 2.63i)T - 4iT^{2}
3 1+(0.614+0.614i)T+9iT2 1 + (0.614 + 0.614i)T + 9iT^{2}
7 1+(1.62+1.62i)T49iT2 1 + (-1.62 + 1.62i)T - 49iT^{2}
11 112.6T+121T2 1 - 12.6T + 121T^{2}
13 1+(13.113.1i)T+169iT2 1 + (-13.1 - 13.1i)T + 169iT^{2}
17 1+(2.73+2.73i)T289iT2 1 + (-2.73 + 2.73i)T - 289iT^{2}
19 126.9iT361T2 1 - 26.9iT - 361T^{2}
29 14.50iT841T2 1 - 4.50iT - 841T^{2}
31 1+38.0T+961T2 1 + 38.0T + 961T^{2}
37 1+(16.1+16.1i)T1.36e3iT2 1 + (-16.1 + 16.1i)T - 1.36e3iT^{2}
41 1+73.7T+1.68e3T2 1 + 73.7T + 1.68e3T^{2}
43 1+(8.28+8.28i)T+1.84e3iT2 1 + (8.28 + 8.28i)T + 1.84e3iT^{2}
47 1+(30.7+30.7i)T2.20e3iT2 1 + (-30.7 + 30.7i)T - 2.20e3iT^{2}
53 1+(52.152.1i)T+2.80e3iT2 1 + (-52.1 - 52.1i)T + 2.80e3iT^{2}
59 1+34.1iT3.48e3T2 1 + 34.1iT - 3.48e3T^{2}
61 1+2.91T+3.72e3T2 1 + 2.91T + 3.72e3T^{2}
67 1+(55.955.9i)T4.48e3iT2 1 + (55.9 - 55.9i)T - 4.48e3iT^{2}
71 1+3.68T+5.04e3T2 1 + 3.68T + 5.04e3T^{2}
73 1+(86.886.8i)T+5.32e3iT2 1 + (-86.8 - 86.8i)T + 5.32e3iT^{2}
79 152.8iT6.24e3T2 1 - 52.8iT - 6.24e3T^{2}
83 1+(101.+101.i)T+6.88e3iT2 1 + (101. + 101. i)T + 6.88e3iT^{2}
89 1+98.9iT7.92e3T2 1 + 98.9iT - 7.92e3T^{2}
97 1+(1.90+1.90i)T9.40e3iT2 1 + (-1.90 + 1.90i)T - 9.40e3iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.66303600886717431431585855213, −11.77312393809989755654058212830, −11.43829596249417405644979377808, −10.31060122769297766312161350946, −9.002638633213285170231600480356, −6.91252271543637810130176426748, −5.92003365444513692086572405246, −4.06332363882323828098151315994, −3.57666603032619257820527654543, −1.42790639382048308223840975176, 3.53127612234937543705044078907, 4.66929713534406634514530868483, 5.56248833969923676020511241597, 6.90134614818380212752433795715, 8.030562343415461348409284948130, 8.810736922915282795567463667114, 11.08031133862296560197899941051, 11.94100008523965940755898240508, 13.03388583710523791352985044664, 13.66622142043064869903338786669

Graph of the ZZ-function along the critical line