L(s) = 1 | + (2.63 − 2.63i)2-s + (−0.614 − 0.614i)3-s − 9.92i·4-s + (−4.07 + 2.89i)5-s − 3.24·6-s + (1.62 − 1.62i)7-s + (−15.6 − 15.6i)8-s − 8.24i·9-s + (−3.12 + 18.3i)10-s + 12.6·11-s + (−6.09 + 6.09i)12-s + (13.1 + 13.1i)13-s − 8.57i·14-s + (4.28 + 0.728i)15-s − 42.7·16-s + (2.73 − 2.73i)17-s + ⋯ |
L(s) = 1 | + (1.31 − 1.31i)2-s + (−0.204 − 0.204i)3-s − 2.48i·4-s + (−0.815 + 0.578i)5-s − 0.540·6-s + (0.232 − 0.232i)7-s + (−1.95 − 1.95i)8-s − 0.916i·9-s + (−0.312 + 1.83i)10-s + 1.15·11-s + (−0.507 + 0.507i)12-s + (1.01 + 1.01i)13-s − 0.612i·14-s + (0.285 + 0.0485i)15-s − 2.67·16-s + (0.161 − 0.161i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.660 + 0.750i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.660 + 0.750i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.935630 - 2.07072i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.935630 - 2.07072i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (4.07 - 2.89i)T \) |
| 23 | \( 1 + (-3.39 - 3.39i)T \) |
good | 2 | \( 1 + (-2.63 + 2.63i)T - 4iT^{2} \) |
| 3 | \( 1 + (0.614 + 0.614i)T + 9iT^{2} \) |
| 7 | \( 1 + (-1.62 + 1.62i)T - 49iT^{2} \) |
| 11 | \( 1 - 12.6T + 121T^{2} \) |
| 13 | \( 1 + (-13.1 - 13.1i)T + 169iT^{2} \) |
| 17 | \( 1 + (-2.73 + 2.73i)T - 289iT^{2} \) |
| 19 | \( 1 - 26.9iT - 361T^{2} \) |
| 29 | \( 1 - 4.50iT - 841T^{2} \) |
| 31 | \( 1 + 38.0T + 961T^{2} \) |
| 37 | \( 1 + (-16.1 + 16.1i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 73.7T + 1.68e3T^{2} \) |
| 43 | \( 1 + (8.28 + 8.28i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-30.7 + 30.7i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (-52.1 - 52.1i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + 34.1iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 2.91T + 3.72e3T^{2} \) |
| 67 | \( 1 + (55.9 - 55.9i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + 3.68T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-86.8 - 86.8i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 52.8iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (101. + 101. i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + 98.9iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-1.90 + 1.90i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.66303600886717431431585855213, −11.77312393809989755654058212830, −11.43829596249417405644979377808, −10.31060122769297766312161350946, −9.002638633213285170231600480356, −6.91252271543637810130176426748, −5.92003365444513692086572405246, −4.06332363882323828098151315994, −3.57666603032619257820527654543, −1.42790639382048308223840975176,
3.53127612234937543705044078907, 4.66929713534406634514530868483, 5.56248833969923676020511241597, 6.90134614818380212752433795715, 8.030562343415461348409284948130, 8.810736922915282795567463667114, 11.08031133862296560197899941051, 11.94100008523965940755898240508, 13.03388583710523791352985044664, 13.66622142043064869903338786669