L(s) = 1 | + (−2.11 + 2.11i)2-s + (−0.751 − 0.751i)3-s − 4.91i·4-s + (−1.47 + 4.77i)5-s + 3.17·6-s + (−3.30 + 3.30i)7-s + (1.92 + 1.92i)8-s − 7.87i·9-s + (−6.96 − 13.2i)10-s − 2.07·11-s + (−3.69 + 3.69i)12-s + (−9.71 − 9.71i)13-s − 13.9i·14-s + (4.70 − 2.48i)15-s + 11.5·16-s + (−2.26 + 2.26i)17-s + ⋯ |
L(s) = 1 | + (−1.05 + 1.05i)2-s + (−0.250 − 0.250i)3-s − 1.22i·4-s + (−0.295 + 0.955i)5-s + 0.528·6-s + (−0.472 + 0.472i)7-s + (0.240 + 0.240i)8-s − 0.874i·9-s + (−0.696 − 1.32i)10-s − 0.188·11-s + (−0.307 + 0.307i)12-s + (−0.747 − 0.747i)13-s − 0.997i·14-s + (0.313 − 0.165i)15-s + 0.720·16-s + (−0.133 + 0.133i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0679 + 0.997i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.0679 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0453026 - 0.0484911i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0453026 - 0.0484911i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (1.47 - 4.77i)T \) |
| 23 | \( 1 + (-3.39 - 3.39i)T \) |
good | 2 | \( 1 + (2.11 - 2.11i)T - 4iT^{2} \) |
| 3 | \( 1 + (0.751 + 0.751i)T + 9iT^{2} \) |
| 7 | \( 1 + (3.30 - 3.30i)T - 49iT^{2} \) |
| 11 | \( 1 + 2.07T + 121T^{2} \) |
| 13 | \( 1 + (9.71 + 9.71i)T + 169iT^{2} \) |
| 17 | \( 1 + (2.26 - 2.26i)T - 289iT^{2} \) |
| 19 | \( 1 + 32.3iT - 361T^{2} \) |
| 29 | \( 1 - 21.3iT - 841T^{2} \) |
| 31 | \( 1 + 47.1T + 961T^{2} \) |
| 37 | \( 1 + (30.9 - 30.9i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 8.65T + 1.68e3T^{2} \) |
| 43 | \( 1 + (23.0 + 23.0i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-4.91 + 4.91i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (-16.0 - 16.0i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 - 15.8iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 92.5T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-2.96 + 2.96i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + 112.T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-4.53 - 4.53i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 17.0iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (76.6 + 76.6i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 103. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-71.0 + 71.0i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.02084005861265448120258657526, −11.95113123213863465426401468239, −10.68135255018502043752566413433, −9.606016605947787981348976484163, −8.686000090639929884506072245942, −7.26679601011140317337428741826, −6.79213666930022439111352052226, −5.58719811838846120155166116382, −3.13136850485934591586914615576, −0.06592429037849532802622447156,
1.89194620219527878244810521655, 3.91532842591014316289147973827, 5.41756216534105635030705367609, 7.49537016278646516629779532102, 8.499514791334228870636778297998, 9.617087453940746871898052941015, 10.30588386308642189305102098397, 11.38793066681877479480364704789, 12.24998737600441809343677314895, 13.16466211480802301496731520471