Properties

Label 2-115-23.13-c3-0-20
Degree $2$
Conductor $115$
Sign $-0.117 - 0.993i$
Analytic cond. $6.78521$
Root an. cond. $2.60484$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.78 − 3.20i)2-s + (0.620 + 0.398i)3-s + (−1.42 + 9.93i)4-s + (2.07 − 4.54i)5-s + (−0.446 − 3.10i)6-s + (−1.32 − 0.388i)7-s + (7.27 − 4.67i)8-s + (−10.9 − 24.0i)9-s + (−20.3 + 5.98i)10-s + (−14.8 + 17.1i)11-s + (−4.85 + 5.59i)12-s + (−74.9 + 22.0i)13-s + (2.43 + 5.32i)14-s + (3.10 − 1.99i)15-s + (41.7 + 12.2i)16-s + (11.2 + 77.9i)17-s + ⋯
L(s)  = 1  + (−0.983 − 1.13i)2-s + (0.119 + 0.0767i)3-s + (−0.178 + 1.24i)4-s + (0.185 − 0.406i)5-s + (−0.0303 − 0.211i)6-s + (−0.0713 − 0.0209i)7-s + (0.321 − 0.206i)8-s + (−0.407 − 0.891i)9-s + (−0.644 + 0.189i)10-s + (−0.407 + 0.470i)11-s + (−0.116 + 0.134i)12-s + (−1.60 + 0.469i)13-s + (0.0464 + 0.101i)14-s + (0.0534 − 0.0343i)15-s + (0.652 + 0.191i)16-s + (0.159 + 1.11i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.117 - 0.993i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.117 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(115\)    =    \(5 \cdot 23\)
Sign: $-0.117 - 0.993i$
Analytic conductor: \(6.78521\)
Root analytic conductor: \(2.60484\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{115} (36, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 115,\ (\ :3/2),\ -0.117 - 0.993i)\)

Particular Values

\(L(2)\) \(\approx\) \(3.99528\times10^{-5} + 4.49470\times10^{-5}i\)
\(L(\frac12)\) \(\approx\) \(3.99528\times10^{-5} + 4.49470\times10^{-5}i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-2.07 + 4.54i)T \)
23 \( 1 + (34.9 - 104. i)T \)
good2 \( 1 + (2.78 + 3.20i)T + (-1.13 + 7.91i)T^{2} \)
3 \( 1 + (-0.620 - 0.398i)T + (11.2 + 24.5i)T^{2} \)
7 \( 1 + (1.32 + 0.388i)T + (288. + 185. i)T^{2} \)
11 \( 1 + (14.8 - 17.1i)T + (-189. - 1.31e3i)T^{2} \)
13 \( 1 + (74.9 - 22.0i)T + (1.84e3 - 1.18e3i)T^{2} \)
17 \( 1 + (-11.2 - 77.9i)T + (-4.71e3 + 1.38e3i)T^{2} \)
19 \( 1 + (-15.1 + 105. i)T + (-6.58e3 - 1.93e3i)T^{2} \)
29 \( 1 + (-37.5 - 261. i)T + (-2.34e4 + 6.87e3i)T^{2} \)
31 \( 1 + (169. - 108. i)T + (1.23e4 - 2.70e4i)T^{2} \)
37 \( 1 + (-55.8 - 122. i)T + (-3.31e4 + 3.82e4i)T^{2} \)
41 \( 1 + (-154. + 337. i)T + (-4.51e4 - 5.20e4i)T^{2} \)
43 \( 1 + (376. + 242. i)T + (3.30e4 + 7.23e4i)T^{2} \)
47 \( 1 + 376.T + 1.03e5T^{2} \)
53 \( 1 + (236. + 69.5i)T + (1.25e5 + 8.04e4i)T^{2} \)
59 \( 1 + (93.6 - 27.5i)T + (1.72e5 - 1.11e5i)T^{2} \)
61 \( 1 + (-650. + 417. i)T + (9.42e4 - 2.06e5i)T^{2} \)
67 \( 1 + (147. + 169. i)T + (-4.28e4 + 2.97e5i)T^{2} \)
71 \( 1 + (-178. - 205. i)T + (-5.09e4 + 3.54e5i)T^{2} \)
73 \( 1 + (-56.5 + 393. i)T + (-3.73e5 - 1.09e5i)T^{2} \)
79 \( 1 + (17.1 - 5.03i)T + (4.14e5 - 2.66e5i)T^{2} \)
83 \( 1 + (-362. - 793. i)T + (-3.74e5 + 4.32e5i)T^{2} \)
89 \( 1 + (535. + 344. i)T + (2.92e5 + 6.41e5i)T^{2} \)
97 \( 1 + (-241. + 527. i)T + (-5.97e5 - 6.89e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.21091698475040698813473214711, −11.20226840065720622148381285895, −10.00706127796421050251651776530, −9.367531168822833278132917647139, −8.457681728309608362451593618917, −7.01346605814738011434599463480, −5.16544046597213070894008942469, −3.32203496942244072392678008414, −1.84792415876142234700126695734, −0.00004112996519286253218648726, 2.67621712119839734428916389165, 5.16398845258513166350917429852, 6.27325056959775251881272233185, 7.68337230807013327637699582075, 8.007069620910015031203990717996, 9.570564005272895045417092233151, 10.20083432807247326583734543391, 11.60498366018056294564443952958, 12.99382304853253867454427088533, 14.33138712292448877282841328185

Graph of the $Z$-function along the critical line