L(s) = 1 | + (−2.78 − 3.20i)2-s + (0.620 + 0.398i)3-s + (−1.42 + 9.93i)4-s + (2.07 − 4.54i)5-s + (−0.446 − 3.10i)6-s + (−1.32 − 0.388i)7-s + (7.27 − 4.67i)8-s + (−10.9 − 24.0i)9-s + (−20.3 + 5.98i)10-s + (−14.8 + 17.1i)11-s + (−4.85 + 5.59i)12-s + (−74.9 + 22.0i)13-s + (2.43 + 5.32i)14-s + (3.10 − 1.99i)15-s + (41.7 + 12.2i)16-s + (11.2 + 77.9i)17-s + ⋯ |
L(s) = 1 | + (−0.983 − 1.13i)2-s + (0.119 + 0.0767i)3-s + (−0.178 + 1.24i)4-s + (0.185 − 0.406i)5-s + (−0.0303 − 0.211i)6-s + (−0.0713 − 0.0209i)7-s + (0.321 − 0.206i)8-s + (−0.407 − 0.891i)9-s + (−0.644 + 0.189i)10-s + (−0.407 + 0.470i)11-s + (−0.116 + 0.134i)12-s + (−1.60 + 0.469i)13-s + (0.0464 + 0.101i)14-s + (0.0534 − 0.0343i)15-s + (0.652 + 0.191i)16-s + (0.159 + 1.11i)17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(−0.117−0.993i)Λ(4−s)
Λ(s)=(=(115s/2ΓC(s+3/2)L(s)(−0.117−0.993i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
−0.117−0.993i
|
Analytic conductor: |
6.78521 |
Root analytic conductor: |
2.60484 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(36,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :3/2), −0.117−0.993i)
|
Particular Values
L(2) |
≈ |
3.99528×10−5+4.49470×10−5i |
L(21) |
≈ |
3.99528×10−5+4.49470×10−5i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−2.07+4.54i)T |
| 23 | 1+(34.9−104.i)T |
good | 2 | 1+(2.78+3.20i)T+(−1.13+7.91i)T2 |
| 3 | 1+(−0.620−0.398i)T+(11.2+24.5i)T2 |
| 7 | 1+(1.32+0.388i)T+(288.+185.i)T2 |
| 11 | 1+(14.8−17.1i)T+(−189.−1.31e3i)T2 |
| 13 | 1+(74.9−22.0i)T+(1.84e3−1.18e3i)T2 |
| 17 | 1+(−11.2−77.9i)T+(−4.71e3+1.38e3i)T2 |
| 19 | 1+(−15.1+105.i)T+(−6.58e3−1.93e3i)T2 |
| 29 | 1+(−37.5−261.i)T+(−2.34e4+6.87e3i)T2 |
| 31 | 1+(169.−108.i)T+(1.23e4−2.70e4i)T2 |
| 37 | 1+(−55.8−122.i)T+(−3.31e4+3.82e4i)T2 |
| 41 | 1+(−154.+337.i)T+(−4.51e4−5.20e4i)T2 |
| 43 | 1+(376.+242.i)T+(3.30e4+7.23e4i)T2 |
| 47 | 1+376.T+1.03e5T2 |
| 53 | 1+(236.+69.5i)T+(1.25e5+8.04e4i)T2 |
| 59 | 1+(93.6−27.5i)T+(1.72e5−1.11e5i)T2 |
| 61 | 1+(−650.+417.i)T+(9.42e4−2.06e5i)T2 |
| 67 | 1+(147.+169.i)T+(−4.28e4+2.97e5i)T2 |
| 71 | 1+(−178.−205.i)T+(−5.09e4+3.54e5i)T2 |
| 73 | 1+(−56.5+393.i)T+(−3.73e5−1.09e5i)T2 |
| 79 | 1+(17.1−5.03i)T+(4.14e5−2.66e5i)T2 |
| 83 | 1+(−362.−793.i)T+(−3.74e5+4.32e5i)T2 |
| 89 | 1+(535.+344.i)T+(2.92e5+6.41e5i)T2 |
| 97 | 1+(−241.+527.i)T+(−5.97e5−6.89e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.21091698475040698813473214711, −11.20226840065720622148381285895, −10.00706127796421050251651776530, −9.367531168822833278132917647139, −8.457681728309608362451593618917, −7.01346605814738011434599463480, −5.16544046597213070894008942469, −3.32203496942244072392678008414, −1.84792415876142234700126695734, −0.00004112996519286253218648726,
2.67621712119839734428916389165, 5.16398845258513166350917429852, 6.27325056959775251881272233185, 7.68337230807013327637699582075, 8.007069620910015031203990717996, 9.570564005272895045417092233151, 10.20083432807247326583734543391, 11.60498366018056294564443952958, 12.99382304853253867454427088533, 14.33138712292448877282841328185