Properties

Label 2-115-115.102-c3-0-0
Degree $2$
Conductor $115$
Sign $0.995 - 0.0900i$
Analytic cond. $6.78521$
Root an. cond. $2.60484$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.371 − 5.19i)2-s + (−8.92 + 1.94i)3-s + (−18.8 − 2.71i)4-s + (−8.89 − 6.77i)5-s + (6.76 + 47.0i)6-s + (8.66 − 4.72i)7-s + (−12.2 + 56.3i)8-s + (51.2 − 23.4i)9-s + (−38.4 + 43.6i)10-s + (−37.0 − 32.0i)11-s + (173. − 12.4i)12-s + (−1.59 + 2.92i)13-s + (−21.3 − 46.7i)14-s + (92.4 + 43.2i)15-s + (141. + 41.5i)16-s + (53.9 + 40.3i)17-s + ⋯
L(s)  = 1  + (0.131 − 1.83i)2-s + (−1.71 + 0.373i)3-s + (−2.36 − 0.339i)4-s + (−0.795 − 0.606i)5-s + (0.460 + 3.20i)6-s + (0.467 − 0.255i)7-s + (−0.542 + 2.49i)8-s + (1.89 − 0.867i)9-s + (−1.21 + 1.37i)10-s + (−1.01 − 0.879i)11-s + (4.18 − 0.299i)12-s + (−0.0341 + 0.0624i)13-s + (−0.407 − 0.891i)14-s + (1.59 + 0.744i)15-s + (2.21 + 0.649i)16-s + (0.769 + 0.576i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 - 0.0900i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.995 - 0.0900i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(115\)    =    \(5 \cdot 23\)
Sign: $0.995 - 0.0900i$
Analytic conductor: \(6.78521\)
Root analytic conductor: \(2.60484\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{115} (102, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 115,\ (\ :3/2),\ 0.995 - 0.0900i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.0767753 + 0.00346499i\)
\(L(\frac12)\) \(\approx\) \(0.0767753 + 0.00346499i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (8.89 + 6.77i)T \)
23 \( 1 + (-2.23 - 110. i)T \)
good2 \( 1 + (-0.371 + 5.19i)T + (-7.91 - 1.13i)T^{2} \)
3 \( 1 + (8.92 - 1.94i)T + (24.5 - 11.2i)T^{2} \)
7 \( 1 + (-8.66 + 4.72i)T + (185. - 288. i)T^{2} \)
11 \( 1 + (37.0 + 32.0i)T + (189. + 1.31e3i)T^{2} \)
13 \( 1 + (1.59 - 2.92i)T + (-1.18e3 - 1.84e3i)T^{2} \)
17 \( 1 + (-53.9 - 40.3i)T + (1.38e3 + 4.71e3i)T^{2} \)
19 \( 1 + (-9.07 + 63.0i)T + (-6.58e3 - 1.93e3i)T^{2} \)
29 \( 1 + (284. - 40.8i)T + (2.34e4 - 6.87e3i)T^{2} \)
31 \( 1 + (-58.5 + 37.6i)T + (1.23e4 - 2.70e4i)T^{2} \)
37 \( 1 + (-347. - 129. i)T + (3.82e4 + 3.31e4i)T^{2} \)
41 \( 1 + (-20.3 + 44.6i)T + (-4.51e4 - 5.20e4i)T^{2} \)
43 \( 1 + (-11.1 - 51.3i)T + (-7.23e4 + 3.30e4i)T^{2} \)
47 \( 1 + (446. + 446. i)T + 1.03e5iT^{2} \)
53 \( 1 + (-74.9 - 137. i)T + (-8.04e4 + 1.25e5i)T^{2} \)
59 \( 1 + (30.6 + 104. i)T + (-1.72e5 + 1.11e5i)T^{2} \)
61 \( 1 + (44.3 + 69.0i)T + (-9.42e4 + 2.06e5i)T^{2} \)
67 \( 1 + (686. + 49.1i)T + (2.97e5 + 4.28e4i)T^{2} \)
71 \( 1 + (-71.9 - 82.9i)T + (-5.09e4 + 3.54e5i)T^{2} \)
73 \( 1 + (-279. - 374. i)T + (-1.09e5 + 3.73e5i)T^{2} \)
79 \( 1 + (-820. + 240. i)T + (4.14e5 - 2.66e5i)T^{2} \)
83 \( 1 + (179. - 481. i)T + (-4.32e5 - 3.74e5i)T^{2} \)
89 \( 1 + (253. + 162. i)T + (2.92e5 + 6.41e5i)T^{2} \)
97 \( 1 + (-4.94 - 13.2i)T + (-6.89e5 + 5.97e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.72575229800917169773630597543, −11.59278874998007028598050782715, −11.31725081777797063586905645964, −10.51803762666355282630757820965, −9.426703696777318339565140854000, −7.893351833228260624955694143002, −5.55286609181535238832214609720, −4.78220741865826595567676677956, −3.62571898375426108553230376693, −1.09764304802572881672034702852, 0.06222806141869095087770374003, 4.47471416553086015497968449077, 5.36990970876392466849438751842, 6.33311895981247645948835508450, 7.43729027661344475710436040911, 7.88103825938489425126006476290, 9.887625521806449319900016968079, 11.10660597393510494178297095220, 12.24409284219888858364558624879, 13.03551673789915775624932616580

Graph of the $Z$-function along the critical line