L(s) = 1 | + (0.371 − 5.19i)2-s + (−8.92 + 1.94i)3-s + (−18.8 − 2.71i)4-s + (−8.89 − 6.77i)5-s + (6.76 + 47.0i)6-s + (8.66 − 4.72i)7-s + (−12.2 + 56.3i)8-s + (51.2 − 23.4i)9-s + (−38.4 + 43.6i)10-s + (−37.0 − 32.0i)11-s + (173. − 12.4i)12-s + (−1.59 + 2.92i)13-s + (−21.3 − 46.7i)14-s + (92.4 + 43.2i)15-s + (141. + 41.5i)16-s + (53.9 + 40.3i)17-s + ⋯ |
L(s) = 1 | + (0.131 − 1.83i)2-s + (−1.71 + 0.373i)3-s + (−2.36 − 0.339i)4-s + (−0.795 − 0.606i)5-s + (0.460 + 3.20i)6-s + (0.467 − 0.255i)7-s + (−0.542 + 2.49i)8-s + (1.89 − 0.867i)9-s + (−1.21 + 1.37i)10-s + (−1.01 − 0.879i)11-s + (4.18 − 0.299i)12-s + (−0.0341 + 0.0624i)13-s + (−0.407 − 0.891i)14-s + (1.59 + 0.744i)15-s + (2.21 + 0.649i)16-s + (0.769 + 0.576i)17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(0.995−0.0900i)Λ(4−s)
Λ(s)=(=(115s/2ΓC(s+3/2)L(s)(0.995−0.0900i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
0.995−0.0900i
|
Analytic conductor: |
6.78521 |
Root analytic conductor: |
2.60484 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(102,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :3/2), 0.995−0.0900i)
|
Particular Values
L(2) |
≈ |
0.0767753+0.00346499i |
L(21) |
≈ |
0.0767753+0.00346499i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(8.89+6.77i)T |
| 23 | 1+(−2.23−110.i)T |
good | 2 | 1+(−0.371+5.19i)T+(−7.91−1.13i)T2 |
| 3 | 1+(8.92−1.94i)T+(24.5−11.2i)T2 |
| 7 | 1+(−8.66+4.72i)T+(185.−288.i)T2 |
| 11 | 1+(37.0+32.0i)T+(189.+1.31e3i)T2 |
| 13 | 1+(1.59−2.92i)T+(−1.18e3−1.84e3i)T2 |
| 17 | 1+(−53.9−40.3i)T+(1.38e3+4.71e3i)T2 |
| 19 | 1+(−9.07+63.0i)T+(−6.58e3−1.93e3i)T2 |
| 29 | 1+(284.−40.8i)T+(2.34e4−6.87e3i)T2 |
| 31 | 1+(−58.5+37.6i)T+(1.23e4−2.70e4i)T2 |
| 37 | 1+(−347.−129.i)T+(3.82e4+3.31e4i)T2 |
| 41 | 1+(−20.3+44.6i)T+(−4.51e4−5.20e4i)T2 |
| 43 | 1+(−11.1−51.3i)T+(−7.23e4+3.30e4i)T2 |
| 47 | 1+(446.+446.i)T+1.03e5iT2 |
| 53 | 1+(−74.9−137.i)T+(−8.04e4+1.25e5i)T2 |
| 59 | 1+(30.6+104.i)T+(−1.72e5+1.11e5i)T2 |
| 61 | 1+(44.3+69.0i)T+(−9.42e4+2.06e5i)T2 |
| 67 | 1+(686.+49.1i)T+(2.97e5+4.28e4i)T2 |
| 71 | 1+(−71.9−82.9i)T+(−5.09e4+3.54e5i)T2 |
| 73 | 1+(−279.−374.i)T+(−1.09e5+3.73e5i)T2 |
| 79 | 1+(−820.+240.i)T+(4.14e5−2.66e5i)T2 |
| 83 | 1+(179.−481.i)T+(−4.32e5−3.74e5i)T2 |
| 89 | 1+(253.+162.i)T+(2.92e5+6.41e5i)T2 |
| 97 | 1+(−4.94−13.2i)T+(−6.89e5+5.97e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.72575229800917169773630597543, −11.59278874998007028598050782715, −11.31725081777797063586905645964, −10.51803762666355282630757820965, −9.426703696777318339565140854000, −7.893351833228260624955694143002, −5.55286609181535238832214609720, −4.78220741865826595567676677956, −3.62571898375426108553230376693, −1.09764304802572881672034702852,
0.06222806141869095087770374003, 4.47471416553086015497968449077, 5.36990970876392466849438751842, 6.33311895981247645948835508450, 7.43729027661344475710436040911, 7.88103825938489425126006476290, 9.887625521806449319900016968079, 11.10660597393510494178297095220, 12.24409284219888858364558624879, 13.03551673789915775624932616580