L(s) = 1 | − 1.05i·2-s − 9.44i·3-s + 14.8·4-s + (−2.52 + 24.8i)5-s − 10.0·6-s + 67.6·7-s − 32.7i·8-s − 8.12·9-s + (26.3 + 2.67i)10-s + 168. i·11-s − 140. i·12-s + 214. i·13-s − 71.7i·14-s + (234. + 23.8i)15-s + 203.·16-s − 13.4·17-s + ⋯ |
L(s) = 1 | − 0.264i·2-s − 1.04i·3-s + 0.929·4-s + (−0.101 + 0.994i)5-s − 0.277·6-s + 1.38·7-s − 0.511i·8-s − 0.100·9-s + (0.263 + 0.0267i)10-s + 1.38i·11-s − 0.975i·12-s + 1.27i·13-s − 0.366i·14-s + (1.04 + 0.106i)15-s + 0.794·16-s − 0.0463·17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(0.880+0.473i)Λ(5−s)
Λ(s)=(=(115s/2ΓC(s+2)L(s)(0.880+0.473i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
0.880+0.473i
|
Analytic conductor: |
11.8875 |
Root analytic conductor: |
3.44783 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(114,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :2), 0.880+0.473i)
|
Particular Values
L(25) |
≈ |
2.43938−0.614539i |
L(21) |
≈ |
2.43938−0.614539i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(2.52−24.8i)T |
| 23 | 1+(−202.+488.i)T |
good | 2 | 1+1.05iT−16T2 |
| 3 | 1+9.44iT−81T2 |
| 7 | 1−67.6T+2.40e3T2 |
| 11 | 1−168.iT−1.46e4T2 |
| 13 | 1−214.iT−2.85e4T2 |
| 17 | 1+13.4T+8.35e4T2 |
| 19 | 1+362.iT−1.30e5T2 |
| 29 | 1+1.21e3T+7.07e5T2 |
| 31 | 1−1.39e3T+9.23e5T2 |
| 37 | 1−1.06e3T+1.87e6T2 |
| 41 | 1+541.T+2.82e6T2 |
| 43 | 1+2.34e3T+3.41e6T2 |
| 47 | 1+416.iT−4.87e6T2 |
| 53 | 1+4.14e3T+7.89e6T2 |
| 59 | 1+857.T+1.21e7T2 |
| 61 | 1−3.04e3iT−1.38e7T2 |
| 67 | 1−1.87e3T+2.01e7T2 |
| 71 | 1−9.87e3T+2.54e7T2 |
| 73 | 1+6.97e3iT−2.83e7T2 |
| 79 | 1−2.45e3iT−3.89e7T2 |
| 83 | 1+1.22e4T+4.74e7T2 |
| 89 | 1−8.56e3iT−6.27e7T2 |
| 97 | 1+8.34e3T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.53413534658534197989560329839, −11.62035444018891115821290601418, −11.09331811608325465646965185137, −9.820890911895211761617658541483, −7.975250239775052126666462585819, −7.08546417659202416938922684441, −6.58651165962830825798898462697, −4.50622301904416835592357788570, −2.37766849972395423804695269991, −1.63445498780254574499334687613,
1.35402621710588938524822371876, 3.49150981616805223685491383356, 5.01533817897392517263168965137, 5.76987835805759309610500450082, 7.84289270078122439264555354135, 8.367603603728335396409001805579, 9.849174229922201427071730840406, 11.00325728075792682845810927613, 11.53914227777214197841171266298, 12.89147645510807822839615646509