L(s) = 1 | − 6.76i·2-s − 12.7i·3-s − 29.8·4-s + (−13.2 + 21.2i)5-s − 86.4·6-s + 5.97·7-s + 93.4i·8-s − 82.1·9-s + (143. + 89.3i)10-s + 18.7i·11-s + 380. i·12-s + 30.6i·13-s − 40.4i·14-s + (271. + 168. i)15-s + 155.·16-s − 280.·17-s + ⋯ |
L(s) = 1 | − 1.69i·2-s − 1.41i·3-s − 1.86·4-s + (−0.528 + 0.849i)5-s − 2.40·6-s + 0.121·7-s + 1.46i·8-s − 1.01·9-s + (1.43 + 0.893i)10-s + 0.155i·11-s + 2.64i·12-s + 0.181i·13-s − 0.206i·14-s + (1.20 + 0.749i)15-s + 0.608·16-s − 0.971·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.833 - 0.552i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.833 - 0.552i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.265094 + 0.0799513i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.265094 + 0.0799513i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (13.2 - 21.2i)T \) |
| 23 | \( 1 + (481. + 219. i)T \) |
good | 2 | \( 1 + 6.76iT - 16T^{2} \) |
| 3 | \( 1 + 12.7iT - 81T^{2} \) |
| 7 | \( 1 - 5.97T + 2.40e3T^{2} \) |
| 11 | \( 1 - 18.7iT - 1.46e4T^{2} \) |
| 13 | \( 1 - 30.6iT - 2.85e4T^{2} \) |
| 17 | \( 1 + 280.T + 8.35e4T^{2} \) |
| 19 | \( 1 - 93.6iT - 1.30e5T^{2} \) |
| 29 | \( 1 - 378.T + 7.07e5T^{2} \) |
| 31 | \( 1 - 25.0T + 9.23e5T^{2} \) |
| 37 | \( 1 + 2.50e3T + 1.87e6T^{2} \) |
| 41 | \( 1 - 182.T + 2.82e6T^{2} \) |
| 43 | \( 1 - 3.03e3T + 3.41e6T^{2} \) |
| 47 | \( 1 - 2.99e3iT - 4.87e6T^{2} \) |
| 53 | \( 1 - 3.12e3T + 7.89e6T^{2} \) |
| 59 | \( 1 + 495.T + 1.21e7T^{2} \) |
| 61 | \( 1 + 3.23e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 + 5.93e3T + 2.01e7T^{2} \) |
| 71 | \( 1 + 8.19e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + 6.90e3iT - 2.83e7T^{2} \) |
| 79 | \( 1 - 3.46e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 + 7.71e3T + 4.74e7T^{2} \) |
| 89 | \( 1 - 2.86e3iT - 6.27e7T^{2} \) |
| 97 | \( 1 + 1.52e3T + 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.99597261157795625184799525260, −11.12193588216989091150538645877, −10.22776108075313501481106838785, −8.745663110581633329979635782230, −7.54168486046294545046189181485, −6.40642221657024911400631345893, −4.23149598696874856633382391412, −2.76015967441899488910601670980, −1.71974412646495322626749410634, −0.11974346179305530082886418936,
3.96095036413996811455380213674, 4.78907557384286616327298581306, 5.72756899710910252093142014399, 7.28324618371942487806551072564, 8.550604601254261833946188462114, 9.056648681887890549032867333872, 10.30527243236774313570614157502, 11.67499685370870310821050072302, 13.17569682843161815015939783839, 14.21320620194939977407638807099