L(s) = 1 | + 5.17i·2-s − 1.68i·3-s − 10.7·4-s + (−10.7 + 22.5i)5-s + 8.72·6-s + 91.0·7-s + 26.9i·8-s + 78.1·9-s + (−116. − 55.7i)10-s + 122. i·11-s + 18.1i·12-s − 261. i·13-s + 471. i·14-s + (38.0 + 18.1i)15-s − 312.·16-s − 361.·17-s + ⋯ |
L(s) = 1 | + 1.29i·2-s − 0.187i·3-s − 0.674·4-s + (−0.430 + 0.902i)5-s + 0.242·6-s + 1.85·7-s + 0.421i·8-s + 0.964·9-s + (−1.16 − 0.557i)10-s + 1.01i·11-s + 0.126i·12-s − 1.54i·13-s + 2.40i·14-s + (0.169 + 0.0807i)15-s − 1.21·16-s − 1.25·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.872 - 0.489i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.872 - 0.489i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.505944 + 1.93605i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.505944 + 1.93605i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (10.7 - 22.5i)T \) |
| 23 | \( 1 + (34.8 - 527. i)T \) |
good | 2 | \( 1 - 5.17iT - 16T^{2} \) |
| 3 | \( 1 + 1.68iT - 81T^{2} \) |
| 7 | \( 1 - 91.0T + 2.40e3T^{2} \) |
| 11 | \( 1 - 122. iT - 1.46e4T^{2} \) |
| 13 | \( 1 + 261. iT - 2.85e4T^{2} \) |
| 17 | \( 1 + 361.T + 8.35e4T^{2} \) |
| 19 | \( 1 - 477. iT - 1.30e5T^{2} \) |
| 29 | \( 1 - 985.T + 7.07e5T^{2} \) |
| 31 | \( 1 + 675.T + 9.23e5T^{2} \) |
| 37 | \( 1 + 230.T + 1.87e6T^{2} \) |
| 41 | \( 1 + 1.08e3T + 2.82e6T^{2} \) |
| 43 | \( 1 - 2.03e3T + 3.41e6T^{2} \) |
| 47 | \( 1 + 2.21e3iT - 4.87e6T^{2} \) |
| 53 | \( 1 - 745.T + 7.89e6T^{2} \) |
| 59 | \( 1 - 703.T + 1.21e7T^{2} \) |
| 61 | \( 1 + 570. iT - 1.38e7T^{2} \) |
| 67 | \( 1 - 3.64e3T + 2.01e7T^{2} \) |
| 71 | \( 1 + 759.T + 2.54e7T^{2} \) |
| 73 | \( 1 + 879. iT - 2.83e7T^{2} \) |
| 79 | \( 1 - 2.23e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 + 6.08e3T + 4.74e7T^{2} \) |
| 89 | \( 1 + 25.1iT - 6.27e7T^{2} \) |
| 97 | \( 1 - 3.90e3T + 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.71805045671232074913203701260, −12.26448454959736993396165109429, −11.14146371932991866710278703436, −10.22804501188276941226043784661, −8.303064045805328696745860474094, −7.66490326771781680403555931683, −6.96104568633496713323925995509, −5.47339191184111550358861639071, −4.32010027486929037666503373345, −1.95678391717539233397637606784,
0.952633448465848130392419319017, 2.08093323978243459159484124303, 4.27972231482974966965672433579, 4.66007370833379695372545306486, 6.96766908657424250266543717358, 8.525170094290322457756345358508, 9.188066869551593832281757144895, 10.82633078692789077200067836771, 11.30166642576068607443426694313, 12.09797923469213446168024790246