L(s) = 1 | + 5.17i·2-s − 1.68i·3-s − 10.7·4-s + (−10.7 + 22.5i)5-s + 8.72·6-s + 91.0·7-s + 26.9i·8-s + 78.1·9-s + (−116. − 55.7i)10-s + 122. i·11-s + 18.1i·12-s − 261. i·13-s + 471. i·14-s + (38.0 + 18.1i)15-s − 312.·16-s − 361.·17-s + ⋯ |
L(s) = 1 | + 1.29i·2-s − 0.187i·3-s − 0.674·4-s + (−0.430 + 0.902i)5-s + 0.242·6-s + 1.85·7-s + 0.421i·8-s + 0.964·9-s + (−1.16 − 0.557i)10-s + 1.01i·11-s + 0.126i·12-s − 1.54i·13-s + 2.40i·14-s + (0.169 + 0.0807i)15-s − 1.21·16-s − 1.25·17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(−0.872−0.489i)Λ(5−s)
Λ(s)=(=(115s/2ΓC(s+2)L(s)(−0.872−0.489i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
−0.872−0.489i
|
Analytic conductor: |
11.8875 |
Root analytic conductor: |
3.44783 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(114,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :2), −0.872−0.489i)
|
Particular Values
L(25) |
≈ |
0.505944+1.93605i |
L(21) |
≈ |
0.505944+1.93605i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(10.7−22.5i)T |
| 23 | 1+(34.8−527.i)T |
good | 2 | 1−5.17iT−16T2 |
| 3 | 1+1.68iT−81T2 |
| 7 | 1−91.0T+2.40e3T2 |
| 11 | 1−122.iT−1.46e4T2 |
| 13 | 1+261.iT−2.85e4T2 |
| 17 | 1+361.T+8.35e4T2 |
| 19 | 1−477.iT−1.30e5T2 |
| 29 | 1−985.T+7.07e5T2 |
| 31 | 1+675.T+9.23e5T2 |
| 37 | 1+230.T+1.87e6T2 |
| 41 | 1+1.08e3T+2.82e6T2 |
| 43 | 1−2.03e3T+3.41e6T2 |
| 47 | 1+2.21e3iT−4.87e6T2 |
| 53 | 1−745.T+7.89e6T2 |
| 59 | 1−703.T+1.21e7T2 |
| 61 | 1+570.iT−1.38e7T2 |
| 67 | 1−3.64e3T+2.01e7T2 |
| 71 | 1+759.T+2.54e7T2 |
| 73 | 1+879.iT−2.83e7T2 |
| 79 | 1−2.23e3iT−3.89e7T2 |
| 83 | 1+6.08e3T+4.74e7T2 |
| 89 | 1+25.1iT−6.27e7T2 |
| 97 | 1−3.90e3T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.71805045671232074913203701260, −12.26448454959736993396165109429, −11.14146371932991866710278703436, −10.22804501188276941226043784661, −8.303064045805328696745860474094, −7.66490326771781680403555931683, −6.96104568633496713323925995509, −5.47339191184111550358861639071, −4.32010027486929037666503373345, −1.95678391717539233397637606784,
0.952633448465848130392419319017, 2.08093323978243459159484124303, 4.27972231482974966965672433579, 4.66007370833379695372545306486, 6.96766908657424250266543717358, 8.525170094290322457756345358508, 9.188066869551593832281757144895, 10.82633078692789077200067836771, 11.30166642576068607443426694313, 12.09797923469213446168024790246