L(s) = 1 | + 6.07i·2-s − 5.74i·3-s − 20.9·4-s + (19.8 + 15.2i)5-s + 34.9·6-s − 44.4·7-s − 29.8i·8-s + 47.9·9-s + (−92.6 + 120. i)10-s + 28.8i·11-s + 120. i·12-s + 250. i·13-s − 269. i·14-s + (87.6 − 113. i)15-s − 153.·16-s − 450.·17-s + ⋯ |
L(s) = 1 | + 1.51i·2-s − 0.638i·3-s − 1.30·4-s + (0.792 + 0.609i)5-s + 0.970·6-s − 0.906·7-s − 0.465i·8-s + 0.592·9-s + (−0.926 + 1.20i)10-s + 0.238i·11-s + 0.834i·12-s + 1.48i·13-s − 1.37i·14-s + (0.389 − 0.506i)15-s − 0.599·16-s − 1.55·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.990 + 0.134i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.990 + 0.134i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.0900503 - 1.33222i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0900503 - 1.33222i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-19.8 - 15.2i)T \) |
| 23 | \( 1 + (371. - 376. i)T \) |
good | 2 | \( 1 - 6.07iT - 16T^{2} \) |
| 3 | \( 1 + 5.74iT - 81T^{2} \) |
| 7 | \( 1 + 44.4T + 2.40e3T^{2} \) |
| 11 | \( 1 - 28.8iT - 1.46e4T^{2} \) |
| 13 | \( 1 - 250. iT - 2.85e4T^{2} \) |
| 17 | \( 1 + 450.T + 8.35e4T^{2} \) |
| 19 | \( 1 + 109. iT - 1.30e5T^{2} \) |
| 29 | \( 1 + 103.T + 7.07e5T^{2} \) |
| 31 | \( 1 - 874.T + 9.23e5T^{2} \) |
| 37 | \( 1 + 494.T + 1.87e6T^{2} \) |
| 41 | \( 1 - 563.T + 2.82e6T^{2} \) |
| 43 | \( 1 - 1.72e3T + 3.41e6T^{2} \) |
| 47 | \( 1 - 3.28e3iT - 4.87e6T^{2} \) |
| 53 | \( 1 + 4.26e3T + 7.89e6T^{2} \) |
| 59 | \( 1 - 4.67e3T + 1.21e7T^{2} \) |
| 61 | \( 1 - 6.20e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 - 6.04e3T + 2.01e7T^{2} \) |
| 71 | \( 1 - 2.62e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + 1.55e3iT - 2.83e7T^{2} \) |
| 79 | \( 1 + 1.54e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 - 1.05e3T + 4.74e7T^{2} \) |
| 89 | \( 1 + 1.18e4iT - 6.27e7T^{2} \) |
| 97 | \( 1 - 8.50e3T + 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.64578760011755261850201018966, −12.90080597633787117615917114595, −11.36152654838356503129874362738, −9.796637997145844505398386491361, −8.993939254463844635689705371937, −7.42237137580842385717786705275, −6.65194869481599019865674129282, −6.18478437432020025029897192591, −4.44177840194190371230429409842, −2.13907854265670022084796164582,
0.56170851346014634904512432419, 2.28363952782620619550988933942, 3.65854045441226126845432523157, 4.88113228655595901365720054503, 6.42979661828591897663180102641, 8.567215904987235142566191167746, 9.672110966201181969956011691587, 10.14439401655419822618571245816, 11.01736908359041916640290669916, 12.59030671349804963371198095925