L(s) = 1 | + 6.07i·2-s − 5.74i·3-s − 20.9·4-s + (19.8 + 15.2i)5-s + 34.9·6-s − 44.4·7-s − 29.8i·8-s + 47.9·9-s + (−92.6 + 120. i)10-s + 28.8i·11-s + 120. i·12-s + 250. i·13-s − 269. i·14-s + (87.6 − 113. i)15-s − 153.·16-s − 450.·17-s + ⋯ |
L(s) = 1 | + 1.51i·2-s − 0.638i·3-s − 1.30·4-s + (0.792 + 0.609i)5-s + 0.970·6-s − 0.906·7-s − 0.465i·8-s + 0.592·9-s + (−0.926 + 1.20i)10-s + 0.238i·11-s + 0.834i·12-s + 1.48i·13-s − 1.37i·14-s + (0.389 − 0.506i)15-s − 0.599·16-s − 1.55·17-s + ⋯ |
Λ(s)=(=(115s/2ΓC(s)L(s)(−0.990+0.134i)Λ(5−s)
Λ(s)=(=(115s/2ΓC(s+2)L(s)(−0.990+0.134i)Λ(1−s)
Degree: |
2 |
Conductor: |
115
= 5⋅23
|
Sign: |
−0.990+0.134i
|
Analytic conductor: |
11.8875 |
Root analytic conductor: |
3.44783 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(114,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 115, ( :2), −0.990+0.134i)
|
Particular Values
L(25) |
≈ |
0.0900503−1.33222i |
L(21) |
≈ |
0.0900503−1.33222i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−19.8−15.2i)T |
| 23 | 1+(371.−376.i)T |
good | 2 | 1−6.07iT−16T2 |
| 3 | 1+5.74iT−81T2 |
| 7 | 1+44.4T+2.40e3T2 |
| 11 | 1−28.8iT−1.46e4T2 |
| 13 | 1−250.iT−2.85e4T2 |
| 17 | 1+450.T+8.35e4T2 |
| 19 | 1+109.iT−1.30e5T2 |
| 29 | 1+103.T+7.07e5T2 |
| 31 | 1−874.T+9.23e5T2 |
| 37 | 1+494.T+1.87e6T2 |
| 41 | 1−563.T+2.82e6T2 |
| 43 | 1−1.72e3T+3.41e6T2 |
| 47 | 1−3.28e3iT−4.87e6T2 |
| 53 | 1+4.26e3T+7.89e6T2 |
| 59 | 1−4.67e3T+1.21e7T2 |
| 61 | 1−6.20e3iT−1.38e7T2 |
| 67 | 1−6.04e3T+2.01e7T2 |
| 71 | 1−2.62e3T+2.54e7T2 |
| 73 | 1+1.55e3iT−2.83e7T2 |
| 79 | 1+1.54e3iT−3.89e7T2 |
| 83 | 1−1.05e3T+4.74e7T2 |
| 89 | 1+1.18e4iT−6.27e7T2 |
| 97 | 1−8.50e3T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.64578760011755261850201018966, −12.90080597633787117615917114595, −11.36152654838356503129874362738, −9.796637997145844505398386491361, −8.993939254463844635689705371937, −7.42237137580842385717786705275, −6.65194869481599019865674129282, −6.18478437432020025029897192591, −4.44177840194190371230429409842, −2.13907854265670022084796164582,
0.56170851346014634904512432419, 2.28363952782620619550988933942, 3.65854045441226126845432523157, 4.88113228655595901365720054503, 6.42979661828591897663180102641, 8.567215904987235142566191167746, 9.672110966201181969956011691587, 10.14439401655419822618571245816, 11.01736908359041916640290669916, 12.59030671349804963371198095925