Properties

Label 2-115-1.1-c5-0-5
Degree $2$
Conductor $115$
Sign $1$
Analytic cond. $18.4441$
Root an. cond. $4.29466$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.02·2-s − 8.89·3-s − 30.9·4-s + 25·5-s − 9.09·6-s − 228.·7-s − 64.4·8-s − 163.·9-s + 25.5·10-s + 738.·11-s + 275.·12-s + 207.·13-s − 233.·14-s − 222.·15-s + 924.·16-s − 784.·17-s − 167.·18-s − 627.·19-s − 773.·20-s + 2.03e3·21-s + 755.·22-s − 529·23-s + 572.·24-s + 625·25-s + 212.·26-s + 3.61e3·27-s + 7.06e3·28-s + ⋯
L(s)  = 1  + 0.180·2-s − 0.570·3-s − 0.967·4-s + 0.447·5-s − 0.103·6-s − 1.76·7-s − 0.355·8-s − 0.674·9-s + 0.0808·10-s + 1.83·11-s + 0.551·12-s + 0.341·13-s − 0.318·14-s − 0.255·15-s + 0.902·16-s − 0.658·17-s − 0.121·18-s − 0.398·19-s − 0.432·20-s + 1.00·21-s + 0.332·22-s − 0.208·23-s + 0.202·24-s + 0.200·25-s + 0.0617·26-s + 0.955·27-s + 1.70·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(115\)    =    \(5 \cdot 23\)
Sign: $1$
Analytic conductor: \(18.4441\)
Root analytic conductor: \(4.29466\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 115,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.9588054262\)
\(L(\frac12)\) \(\approx\) \(0.9588054262\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
23 \( 1 + 529T \)
good2 \( 1 - 1.02T + 32T^{2} \)
3 \( 1 + 8.89T + 243T^{2} \)
7 \( 1 + 228.T + 1.68e4T^{2} \)
11 \( 1 - 738.T + 1.61e5T^{2} \)
13 \( 1 - 207.T + 3.71e5T^{2} \)
17 \( 1 + 784.T + 1.41e6T^{2} \)
19 \( 1 + 627.T + 2.47e6T^{2} \)
29 \( 1 - 7.50e3T + 2.05e7T^{2} \)
31 \( 1 - 4.90e3T + 2.86e7T^{2} \)
37 \( 1 - 1.49e3T + 6.93e7T^{2} \)
41 \( 1 + 6.89e3T + 1.15e8T^{2} \)
43 \( 1 - 2.13e4T + 1.47e8T^{2} \)
47 \( 1 + 1.58e4T + 2.29e8T^{2} \)
53 \( 1 - 8.82e3T + 4.18e8T^{2} \)
59 \( 1 + 2.91e4T + 7.14e8T^{2} \)
61 \( 1 + 4.40e4T + 8.44e8T^{2} \)
67 \( 1 + 2.96e4T + 1.35e9T^{2} \)
71 \( 1 - 3.21e4T + 1.80e9T^{2} \)
73 \( 1 - 4.66e4T + 2.07e9T^{2} \)
79 \( 1 + 2.79e3T + 3.07e9T^{2} \)
83 \( 1 + 1.19e5T + 3.93e9T^{2} \)
89 \( 1 - 1.18e5T + 5.58e9T^{2} \)
97 \( 1 - 1.47e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.62851554324833761553902281987, −11.85542724243928944662158068471, −10.36675656468956988855316585179, −9.353106554025425978194842241522, −8.734568815384490264077941788009, −6.43972724365386908213679405641, −6.13950009643455804735101247030, −4.43444132854155837712292125853, −3.17658714567202750440037304184, −0.68219626799653917970463596921, 0.68219626799653917970463596921, 3.17658714567202750440037304184, 4.43444132854155837712292125853, 6.13950009643455804735101247030, 6.43972724365386908213679405641, 8.734568815384490264077941788009, 9.353106554025425978194842241522, 10.36675656468956988855316585179, 11.85542724243928944662158068471, 12.62851554324833761553902281987

Graph of the $Z$-function along the critical line