L(s) = 1 | − 3.41i·5-s + 4.82i·7-s − 2.82·11-s − 2.82·13-s − 5.41i·17-s − 5.65i·19-s − 1.17·23-s − 6.65·25-s − 0.585i·29-s − 3.17i·31-s + 16.4·35-s − 3.65·37-s − 2.58i·41-s − 9.65i·43-s − 12.4·47-s + ⋯ |
L(s) = 1 | − 1.52i·5-s + 1.82i·7-s − 0.852·11-s − 0.784·13-s − 1.31i·17-s − 1.29i·19-s − 0.244·23-s − 1.33·25-s − 0.108i·29-s − 0.569i·31-s + 2.78·35-s − 0.601·37-s − 0.403i·41-s − 1.47i·43-s − 1.82·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.816 + 0.577i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.816 + 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6694428313\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6694428313\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 3.41iT - 5T^{2} \) |
| 7 | \( 1 - 4.82iT - 7T^{2} \) |
| 11 | \( 1 + 2.82T + 11T^{2} \) |
| 13 | \( 1 + 2.82T + 13T^{2} \) |
| 17 | \( 1 + 5.41iT - 17T^{2} \) |
| 19 | \( 1 + 5.65iT - 19T^{2} \) |
| 23 | \( 1 + 1.17T + 23T^{2} \) |
| 29 | \( 1 + 0.585iT - 29T^{2} \) |
| 31 | \( 1 + 3.17iT - 31T^{2} \) |
| 37 | \( 1 + 3.65T + 37T^{2} \) |
| 41 | \( 1 + 2.58iT - 41T^{2} \) |
| 43 | \( 1 + 9.65iT - 43T^{2} \) |
| 47 | \( 1 + 12.4T + 47T^{2} \) |
| 53 | \( 1 - 5.07iT - 53T^{2} \) |
| 59 | \( 1 - 2.34T + 59T^{2} \) |
| 61 | \( 1 + 7.65T + 61T^{2} \) |
| 67 | \( 1 - 12iT - 67T^{2} \) |
| 71 | \( 1 - 4.48T + 71T^{2} \) |
| 73 | \( 1 - 4T + 73T^{2} \) |
| 79 | \( 1 - 6.48iT - 79T^{2} \) |
| 83 | \( 1 + 5.17T + 83T^{2} \) |
| 89 | \( 1 + 12.2iT - 89T^{2} \) |
| 97 | \( 1 - 13.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.248928131757403336393075714435, −8.804126354074394970587951638690, −8.069389352050029694200261372196, −7.05037810678730858280832715059, −5.71027475907301537924616768440, −5.16088655871064618625386181667, −4.65549955431119999458359423907, −2.88003846698935813681377839387, −2.07713242662170756287935472919, −0.27176694672128188998320916940,
1.74409371386106661551645856375, 3.15419101608530799103926814465, 3.78676472210939405701254327598, 4.88378037441442421833968986480, 6.25352706325680377581448148604, 6.78670974354203424011367222553, 7.77208625655135015161292365485, 7.973601663702289752009315938475, 9.761601283529466928969551760967, 10.32522409616942574785124182433