Properties

Label 2-1152-8.5-c1-0-15
Degree $2$
Conductor $1152$
Sign $i$
Analytic cond. $9.19876$
Root an. cond. $3.03294$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.82i·11-s − 6·17-s − 8.48i·19-s + 5·25-s + 6·41-s − 8.48i·43-s − 7·49-s − 14.1i·59-s − 8.48i·67-s − 2·73-s − 2.82i·83-s + 18·89-s − 10·97-s + 19.7i·107-s − 18·113-s + ⋯
L(s)  = 1  − 0.852i·11-s − 1.45·17-s − 1.94i·19-s + 25-s + 0.937·41-s − 1.29i·43-s − 49-s − 1.84i·59-s − 1.03i·67-s − 0.234·73-s − 0.310i·83-s + 1.90·89-s − 1.01·97-s + 1.91i·107-s − 1.69·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1152\)    =    \(2^{7} \cdot 3^{2}\)
Sign: $i$
Analytic conductor: \(9.19876\)
Root analytic conductor: \(3.03294\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1152} (577, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1152,\ (\ :1/2),\ i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.222918354\)
\(L(\frac12)\) \(\approx\) \(1.222918354\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 5T^{2} \)
7 \( 1 + 7T^{2} \)
11 \( 1 + 2.82iT - 11T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 + 6T + 17T^{2} \)
19 \( 1 + 8.48iT - 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 + 8.48iT - 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 - 53T^{2} \)
59 \( 1 + 14.1iT - 59T^{2} \)
61 \( 1 - 61T^{2} \)
67 \( 1 + 8.48iT - 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 2T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 2.82iT - 83T^{2} \)
89 \( 1 - 18T + 89T^{2} \)
97 \( 1 + 10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.308052110342974313763519651679, −8.934112447492472640506451725280, −8.048121073898811792375318381662, −6.92444938786501759950156107667, −6.42418138180048171022465868752, −5.21262286955756833180502824500, −4.46896829721840085049587143533, −3.24748871615377411163213844306, −2.25745157251685861152483598533, −0.53341778551785973348022687080, 1.53493631811794505241308354975, 2.68995322414667914754180710961, 3.99540873574152028944883734374, 4.72953173899036073328979624469, 5.85988215348902339386597827015, 6.67148895424106404354620094510, 7.53817735829035169437157483481, 8.367577345882093467593828327137, 9.215013384766787839614254997182, 10.00896780047405071802409465561

Graph of the $Z$-function along the critical line