L(s) = 1 | − 1.41·5-s − 2.82i·7-s + 4i·11-s + 2i·13-s + 1.41i·17-s + 5.65·19-s + 4·23-s − 2.99·25-s + 7.07·29-s − 8.48i·31-s + 4.00i·35-s − 8i·37-s − 4.24i·41-s + 11.3·43-s + 12·47-s + ⋯ |
L(s) = 1 | − 0.632·5-s − 1.06i·7-s + 1.20i·11-s + 0.554i·13-s + 0.342i·17-s + 1.29·19-s + 0.834·23-s − 0.599·25-s + 1.31·29-s − 1.52i·31-s + 0.676i·35-s − 1.31i·37-s − 0.662i·41-s + 1.72·43-s + 1.75·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 + 0.169i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.985 + 0.169i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.463246573\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.463246573\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 1.41T + 5T^{2} \) |
| 7 | \( 1 + 2.82iT - 7T^{2} \) |
| 11 | \( 1 - 4iT - 11T^{2} \) |
| 13 | \( 1 - 2iT - 13T^{2} \) |
| 17 | \( 1 - 1.41iT - 17T^{2} \) |
| 19 | \( 1 - 5.65T + 19T^{2} \) |
| 23 | \( 1 - 4T + 23T^{2} \) |
| 29 | \( 1 - 7.07T + 29T^{2} \) |
| 31 | \( 1 + 8.48iT - 31T^{2} \) |
| 37 | \( 1 + 8iT - 37T^{2} \) |
| 41 | \( 1 + 4.24iT - 41T^{2} \) |
| 43 | \( 1 - 11.3T + 43T^{2} \) |
| 47 | \( 1 - 12T + 47T^{2} \) |
| 53 | \( 1 + 12.7T + 53T^{2} \) |
| 59 | \( 1 - 59T^{2} \) |
| 61 | \( 1 - 8iT - 61T^{2} \) |
| 67 | \( 1 - 5.65T + 67T^{2} \) |
| 71 | \( 1 - 4T + 71T^{2} \) |
| 73 | \( 1 - 8T + 73T^{2} \) |
| 79 | \( 1 + 2.82iT - 79T^{2} \) |
| 83 | \( 1 - 12iT - 83T^{2} \) |
| 89 | \( 1 - 15.5iT - 89T^{2} \) |
| 97 | \( 1 + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.721149170636961364874190384203, −9.131574402576869388418047435753, −7.77446415581598352434100362066, −7.46739265263169160223209048700, −6.66862840200827491969427911818, −5.43740440800095212987232032961, −4.29821067243884985886996079293, −3.89360831860130700146941109336, −2.42299520525990374527095817847, −0.919482224341953366354628498840,
0.963600920384473100458553095166, 2.80770860167350525144284991224, 3.34715330281123951424148908266, 4.78903020089471820399195516706, 5.54879725037018981711901761452, 6.38345434845708658101467688378, 7.48409695275411928779406154145, 8.265944888087932159690457967210, 8.881179420418852309059662427962, 9.708632250683248754805940447698