L(s) = 1 | + (3.12 − 1.29i)5-s + (−1 + i)7-s + (0.121 + 0.292i)11-s + (1.70 + 0.707i)13-s − 2.82i·17-s + (5.53 + 2.29i)19-s + (0.171 + 0.171i)23-s + (4.53 − 4.53i)25-s + (−1.12 + 2.70i)29-s + 4·31-s + (−1.82 + 4.41i)35-s + (1.70 − 0.707i)37-s + (5.82 + 5.82i)41-s + (−3.29 − 7.94i)43-s − 11.6i·47-s + ⋯ |
L(s) = 1 | + (1.39 − 0.578i)5-s + (−0.377 + 0.377i)7-s + (0.0365 + 0.0883i)11-s + (0.473 + 0.196i)13-s − 0.685i·17-s + (1.26 + 0.526i)19-s + (0.0357 + 0.0357i)23-s + (0.907 − 0.907i)25-s + (−0.208 + 0.502i)29-s + 0.718·31-s + (−0.309 + 0.746i)35-s + (0.280 − 0.116i)37-s + (0.910 + 0.910i)41-s + (−0.502 − 1.21i)43-s − 1.70i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 + 0.195i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.980 + 0.195i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.128146119\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.128146119\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-3.12 + 1.29i)T + (3.53 - 3.53i)T^{2} \) |
| 7 | \( 1 + (1 - i)T - 7iT^{2} \) |
| 11 | \( 1 + (-0.121 - 0.292i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + (-1.70 - 0.707i)T + (9.19 + 9.19i)T^{2} \) |
| 17 | \( 1 + 2.82iT - 17T^{2} \) |
| 19 | \( 1 + (-5.53 - 2.29i)T + (13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 + (-0.171 - 0.171i)T + 23iT^{2} \) |
| 29 | \( 1 + (1.12 - 2.70i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 - 4T + 31T^{2} \) |
| 37 | \( 1 + (-1.70 + 0.707i)T + (26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (-5.82 - 5.82i)T + 41iT^{2} \) |
| 43 | \( 1 + (3.29 + 7.94i)T + (-30.4 + 30.4i)T^{2} \) |
| 47 | \( 1 + 11.6iT - 47T^{2} \) |
| 53 | \( 1 + (3.12 + 7.53i)T + (-37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 + (6.12 - 2.53i)T + (41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (-0.292 + 0.707i)T + (-43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + (1.53 - 3.70i)T + (-47.3 - 47.3i)T^{2} \) |
| 71 | \( 1 + (0.171 - 0.171i)T - 71iT^{2} \) |
| 73 | \( 1 + (-7 - 7i)T + 73iT^{2} \) |
| 79 | \( 1 + 6iT - 79T^{2} \) |
| 83 | \( 1 + (-6.12 - 2.53i)T + (58.6 + 58.6i)T^{2} \) |
| 89 | \( 1 + (-2.65 + 2.65i)T - 89iT^{2} \) |
| 97 | \( 1 + 1.51T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.639788301698135573987375475852, −9.178792297043674389820763534811, −8.320618619295921616758148719353, −7.18771852910160762704472174345, −6.24504914295008594772992172111, −5.56083427978972884646479591167, −4.85127007796923068943460270401, −3.44236516932480023170301866659, −2.31620501130018520575498621490, −1.18706530160206775151018304693,
1.24753920055481025693692017910, 2.54264168329440708203481312112, 3.43015518856683004835495000622, 4.72819062680994929194977626480, 5.88871003924765065431391411118, 6.26578050801755873565194577054, 7.23822424875164423983578894392, 8.156635777035908683012423118385, 9.395605222824713234504460074592, 9.659082425382646336893789053462