Properties

Label 2-1152-8.3-c2-0-34
Degree $2$
Conductor $1152$
Sign $-1$
Analytic cond. $31.3897$
Root an. cond. $5.60265$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.92i·5-s + 12i·7-s + 6.92·11-s − 13.8i·13-s − 14·17-s − 34.6·19-s + 24i·23-s − 22.9·25-s − 34.6i·29-s − 12i·31-s + 83.1·35-s + 27.7i·37-s + 14·41-s − 6.92·43-s − 72i·47-s + ⋯
L(s)  = 1  − 1.38i·5-s + 1.71i·7-s + 0.629·11-s − 1.06i·13-s − 0.823·17-s − 1.82·19-s + 1.04i·23-s − 0.919·25-s − 1.19i·29-s − 0.387i·31-s + 2.37·35-s + 0.748i·37-s + 0.341·41-s − 0.161·43-s − 1.53i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1152\)    =    \(2^{7} \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(31.3897\)
Root analytic conductor: \(5.60265\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1152} (703, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1152,\ (\ :1),\ -1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.2543467715\)
\(L(\frac12)\) \(\approx\) \(0.2543467715\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 6.92iT - 25T^{2} \)
7 \( 1 - 12iT - 49T^{2} \)
11 \( 1 - 6.92T + 121T^{2} \)
13 \( 1 + 13.8iT - 169T^{2} \)
17 \( 1 + 14T + 289T^{2} \)
19 \( 1 + 34.6T + 361T^{2} \)
23 \( 1 - 24iT - 529T^{2} \)
29 \( 1 + 34.6iT - 841T^{2} \)
31 \( 1 + 12iT - 961T^{2} \)
37 \( 1 - 27.7iT - 1.36e3T^{2} \)
41 \( 1 - 14T + 1.68e3T^{2} \)
43 \( 1 + 6.92T + 1.84e3T^{2} \)
47 \( 1 + 72iT - 2.20e3T^{2} \)
53 \( 1 - 62.3iT - 2.80e3T^{2} \)
59 \( 1 + 48.4T + 3.48e3T^{2} \)
61 \( 1 + 55.4iT - 3.72e3T^{2} \)
67 \( 1 + 90.0T + 4.48e3T^{2} \)
71 \( 1 + 24iT - 5.04e3T^{2} \)
73 \( 1 + 50T + 5.32e3T^{2} \)
79 \( 1 + 12iT - 6.24e3T^{2} \)
83 \( 1 + 20.7T + 6.88e3T^{2} \)
89 \( 1 + 62T + 7.92e3T^{2} \)
97 \( 1 + 146T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.003267415061328035384863068489, −8.576000385933359522699652092404, −7.892274891438082513419461921832, −6.38071637180955366143481168663, −5.76057407647167316015459949882, −4.95899227945489607510700670951, −4.07797998258258538752442754497, −2.62834116320571916426900803092, −1.63473733850677570280529901935, −0.07210398363851770413562992426, 1.63722128788802585918731814736, 2.87087492515470037426214589814, 4.09411953096704024660254226080, 4.38710679026083176891820221399, 6.25771656558400054110584313818, 6.84842176635095878118898460225, 7.12672918547377474207427328763, 8.351791880302003244048213455449, 9.260962630917516419823028689461, 10.28447901670425573620246554510

Graph of the $Z$-function along the critical line