Properties

Label 2-1152-4.3-c2-0-10
Degree $2$
Conductor $1152$
Sign $-i$
Analytic cond. $31.3897$
Root an. cond. $5.60265$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.65·5-s − 9.65i·7-s + 18.4i·11-s − 11.6·13-s − 9.31·17-s + 15.1i·19-s + 22.3i·23-s − 11.6·25-s − 28.3·29-s + 45.2i·31-s − 35.3i·35-s + 49.5·37-s + 20.6·41-s + 46.0i·43-s − 12.6i·47-s + ⋯
L(s)  = 1  + 0.731·5-s − 1.37i·7-s + 1.68i·11-s − 0.896·13-s − 0.547·17-s + 0.798i·19-s + 0.971i·23-s − 0.465·25-s − 0.977·29-s + 1.45i·31-s − 1.00i·35-s + 1.34·37-s + 0.503·41-s + 1.07i·43-s − 0.269i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1152\)    =    \(2^{7} \cdot 3^{2}\)
Sign: $-i$
Analytic conductor: \(31.3897\)
Root analytic conductor: \(5.60265\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1152} (127, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1152,\ (\ :1),\ -i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.402908456\)
\(L(\frac12)\) \(\approx\) \(1.402908456\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 3.65T + 25T^{2} \)
7 \( 1 + 9.65iT - 49T^{2} \)
11 \( 1 - 18.4iT - 121T^{2} \)
13 \( 1 + 11.6T + 169T^{2} \)
17 \( 1 + 9.31T + 289T^{2} \)
19 \( 1 - 15.1iT - 361T^{2} \)
23 \( 1 - 22.3iT - 529T^{2} \)
29 \( 1 + 28.3T + 841T^{2} \)
31 \( 1 - 45.2iT - 961T^{2} \)
37 \( 1 - 49.5T + 1.36e3T^{2} \)
41 \( 1 - 20.6T + 1.68e3T^{2} \)
43 \( 1 - 46.0iT - 1.84e3T^{2} \)
47 \( 1 + 12.6iT - 2.20e3T^{2} \)
53 \( 1 - 27.6T + 2.80e3T^{2} \)
59 \( 1 - 9.11iT - 3.48e3T^{2} \)
61 \( 1 - 113.T + 3.72e3T^{2} \)
67 \( 1 + 45.5iT - 4.48e3T^{2} \)
71 \( 1 - 16.2iT - 5.04e3T^{2} \)
73 \( 1 + 11.9T + 5.32e3T^{2} \)
79 \( 1 + 70.0iT - 6.24e3T^{2} \)
83 \( 1 - 94.6iT - 6.88e3T^{2} \)
89 \( 1 + 110.T + 7.92e3T^{2} \)
97 \( 1 + 25.4T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.819934738034420195951653044479, −9.368020047088436527068075153512, −7.907460532054480320381407826374, −7.30693287650460260643323562743, −6.67569389270768215439594688134, −5.49233862532290499871106146429, −4.58308482587066920106240595792, −3.81359042992171121528247121536, −2.32172169616497785474686100665, −1.37954111021008924505252364283, 0.40523535006971082673779612066, 2.23725405442507312031015686446, 2.73210282463609309240009677697, 4.18136666892342915375042209231, 5.49182804523291770368751606873, 5.79390213522096221376408592971, 6.71075810099601137739577856587, 7.927594040388835819854974884745, 8.761932954019221096097810644133, 9.270181180923825627737128574291

Graph of the $Z$-function along the critical line