L(s) = 1 | + 9.77i·5-s − 16.6i·7-s − 12.3·11-s + 74.0·13-s − 18.4i·17-s + 106. i·19-s − 116.·23-s + 29.4·25-s − 93.6i·29-s + 158. i·31-s + 162.·35-s + 50.7·37-s − 315. i·41-s − 254. i·43-s − 355.·47-s + ⋯ |
L(s) = 1 | + 0.874i·5-s − 0.896i·7-s − 0.338·11-s + 1.57·13-s − 0.262i·17-s + 1.28i·19-s − 1.05·23-s + 0.235·25-s − 0.599i·29-s + 0.916i·31-s + 0.784·35-s + 0.225·37-s − 1.20i·41-s − 0.903i·43-s − 1.10·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.816 - 0.577i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.816 - 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.101434465\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.101434465\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 9.77iT - 125T^{2} \) |
| 7 | \( 1 + 16.6iT - 343T^{2} \) |
| 11 | \( 1 + 12.3T + 1.33e3T^{2} \) |
| 13 | \( 1 - 74.0T + 2.19e3T^{2} \) |
| 17 | \( 1 + 18.4iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 106. iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 116.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 93.6iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 158. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 50.7T + 5.06e4T^{2} \) |
| 41 | \( 1 + 315. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 254. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 355.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 150. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 504.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 281.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 101. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 797.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 1.00e3T + 3.89e5T^{2} \) |
| 79 | \( 1 - 189. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 475.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.52e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 700.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.700659583078965074485101677445, −8.501206198310666941873567143867, −7.88214424640161828076930385064, −6.93823434067807208934492416293, −6.28727392530114298182842749003, −5.35753330915335745791999856884, −3.92613720059093326079185016995, −3.52583735655678375933260974395, −2.14603317122278167024385987889, −0.876419348344388113585903907126,
0.66867542158694727101592620528, 1.84084583119309565337861685554, 3.02728488983373063779265158073, 4.19317671211415101079716278478, 5.10797618753897388396651936318, 5.90456904979894808725034240049, 6.67317875183414525446911084362, 8.041806844418248117699285033420, 8.515352574074020633847258322359, 9.189085454639054682787450644286