L(s) = 1 | + 9.77i·5-s − 16.6i·7-s − 12.3·11-s + 74.0·13-s − 18.4i·17-s + 106. i·19-s − 116.·23-s + 29.4·25-s − 93.6i·29-s + 158. i·31-s + 162.·35-s + 50.7·37-s − 315. i·41-s − 254. i·43-s − 355.·47-s + ⋯ |
L(s) = 1 | + 0.874i·5-s − 0.896i·7-s − 0.338·11-s + 1.57·13-s − 0.262i·17-s + 1.28i·19-s − 1.05·23-s + 0.235·25-s − 0.599i·29-s + 0.916i·31-s + 0.784·35-s + 0.225·37-s − 1.20i·41-s − 0.903i·43-s − 1.10·47-s + ⋯ |
Λ(s)=(=(1152s/2ΓC(s)L(s)(0.816−0.577i)Λ(4−s)
Λ(s)=(=(1152s/2ΓC(s+3/2)L(s)(0.816−0.577i)Λ(1−s)
Degree: |
2 |
Conductor: |
1152
= 27⋅32
|
Sign: |
0.816−0.577i
|
Analytic conductor: |
67.9702 |
Root analytic conductor: |
8.24440 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1152(1151,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1152, ( :3/2), 0.816−0.577i)
|
Particular Values
L(2) |
≈ |
2.101434465 |
L(21) |
≈ |
2.101434465 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−9.77iT−125T2 |
| 7 | 1+16.6iT−343T2 |
| 11 | 1+12.3T+1.33e3T2 |
| 13 | 1−74.0T+2.19e3T2 |
| 17 | 1+18.4iT−4.91e3T2 |
| 19 | 1−106.iT−6.85e3T2 |
| 23 | 1+116.T+1.21e4T2 |
| 29 | 1+93.6iT−2.43e4T2 |
| 31 | 1−158.iT−2.97e4T2 |
| 37 | 1−50.7T+5.06e4T2 |
| 41 | 1+315.iT−6.89e4T2 |
| 43 | 1+254.iT−7.95e4T2 |
| 47 | 1+355.T+1.03e5T2 |
| 53 | 1−150.iT−1.48e5T2 |
| 59 | 1−504.T+2.05e5T2 |
| 61 | 1−281.T+2.26e5T2 |
| 67 | 1+101.iT−3.00e5T2 |
| 71 | 1−797.T+3.57e5T2 |
| 73 | 1−1.00e3T+3.89e5T2 |
| 79 | 1−189.iT−4.93e5T2 |
| 83 | 1+475.T+5.71e5T2 |
| 89 | 1−1.52e3iT−7.04e5T2 |
| 97 | 1−700.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.700659583078965074485101677445, −8.501206198310666941873567143867, −7.88214424640161828076930385064, −6.93823434067807208934492416293, −6.28727392530114298182842749003, −5.35753330915335745791999856884, −3.92613720059093326079185016995, −3.52583735655678375933260974395, −2.14603317122278167024385987889, −0.876419348344388113585903907126,
0.66867542158694727101592620528, 1.84084583119309565337861685554, 3.02728488983373063779265158073, 4.19317671211415101079716278478, 5.10797618753897388396651936318, 5.90456904979894808725034240049, 6.67317875183414525446911084362, 8.041806844418248117699285033420, 8.515352574074020633847258322359, 9.189085454639054682787450644286