L(s) = 1 | − 240·17-s + 328·25-s + 816·41-s − 536·49-s − 1.93e3·73-s − 7.34e3·89-s − 2.96e3·97-s + 7.92e3·113-s + 8.02e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 296·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | − 3.42·17-s + 2.62·25-s + 3.10·41-s − 1.56·49-s − 3.10·73-s − 8.74·89-s − 3.09·97-s + 6.59·113-s + 6.02·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 0.134·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + 0.000361·197-s + 0.000356·199-s + 0.000326·211-s + ⋯ |
Λ(s)=(=((256⋅316)s/2ΓC(s)8L(s)Λ(4−s)
Λ(s)=(=((256⋅316)s/2ΓC(s+3/2)8L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.1330192525 |
L(21) |
≈ |
0.1330192525 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | (1−164T2+19542T4−164p6T6+p12T8)2 |
| 7 | (1+268T2−41658T4+268p6T6+p12T8)2 |
| 11 | (1−4012T2+7272246T4−4012p6T6+p12T8)2 |
| 13 | (1−148T2+3687126T4−148p6T6+p12T8)2 |
| 17 | (1+60T+6118T2+60p3T3+p6T4)4 |
| 19 | (1−17932T2+171826710T4−17932p6T6+p12T8)2 |
| 23 | (1−4900T2+206522790T4−4900p6T6+p12T8)2 |
| 29 | (1−56516T2+1986668214T4−56516p6T6+p12T8)2 |
| 31 | (1+63916T2+2595558p2T4+63916p6T6+p12T8)2 |
| 37 | (1−95476T2+7028163510T4−95476p6T6+p12T8)2 |
| 41 | (1−204T+806pT2−204p3T3+p6T4)4 |
| 43 | (1−273964T2+31085635254T4−273964p6T6+p12T8)2 |
| 47 | (1+112892T2+23215757766T4+112892p6T6+p12T8)2 |
| 53 | (1−507620T2+107623720470T4−507620p6T6+p12T8)2 |
| 59 | (1−121324T2−26790709386T4−121324p6T6+p12T8)2 |
| 61 | (1+132332T2+107394800406T4+132332p6T6+p12T8)2 |
| 67 | (1−364108T2+112096368726T4−364108p6T6+p12T8)2 |
| 71 | (1+4612pT2+275267100390T4+4612p7T6+p12T8)2 |
| 73 | (1+484T+541686T2+484p3T3+p6T4)4 |
| 79 | (1+932332T2+435081520806T4+932332p6T6+p12T8)2 |
| 83 | (1−539404T2+296977663254T4−539404p6T6+p12T8)2 |
| 89 | (1+1836T+2086774T2+1836p3T3+p6T4)4 |
| 97 | (1+740T+1943814T2+740p3T3+p6T4)4 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.73383295787935081753443259970, −3.71310039081462585177292609242, −3.46750259161953231436724651718, −3.35637100326392822492134091137, −3.09723682831516419102028626658, −2.92298887870634147017861010240, −2.85243219494961954132908540998, −2.85077827660327784830161955048, −2.74695332104695814375032805201, −2.69994288669671897950507309541, −2.56640593021480509127586301485, −2.13809632665568597118602319348, −2.01149314010461355207566147560, −1.95623543902953692579732440371, −1.93727046918475540583331458278, −1.69051032914352187361069855606, −1.49508914497466477179276019444, −1.31750218326804521209734162842, −1.16329946430623431297983349548, −1.03831991580905578803413510145, −0.74132435380500799694113562094, −0.59200752991177752465189296636, −0.55318733233634350709028126579, −0.18704147047753559682033196515, −0.03387559755214427791727877428,
0.03387559755214427791727877428, 0.18704147047753559682033196515, 0.55318733233634350709028126579, 0.59200752991177752465189296636, 0.74132435380500799694113562094, 1.03831991580905578803413510145, 1.16329946430623431297983349548, 1.31750218326804521209734162842, 1.49508914497466477179276019444, 1.69051032914352187361069855606, 1.93727046918475540583331458278, 1.95623543902953692579732440371, 2.01149314010461355207566147560, 2.13809632665568597118602319348, 2.56640593021480509127586301485, 2.69994288669671897950507309541, 2.74695332104695814375032805201, 2.85077827660327784830161955048, 2.85243219494961954132908540998, 2.92298887870634147017861010240, 3.09723682831516419102028626658, 3.35637100326392822492134091137, 3.46750259161953231436724651718, 3.71310039081462585177292609242, 3.73383295787935081753443259970
Plot not available for L-functions of degree greater than 10.