L(s) = 1 | − 17.4i·5-s − 2.99·7-s + 10.6i·11-s + 43.3i·13-s + 37.8·17-s − 79.8i·19-s + 191.·23-s − 178.·25-s + 138. i·29-s + 212.·31-s + 52.1i·35-s − 270. i·37-s + 441.·41-s + 64.1i·43-s + 436.·47-s + ⋯ |
L(s) = 1 | − 1.55i·5-s − 0.161·7-s + 0.291i·11-s + 0.924i·13-s + 0.540·17-s − 0.964i·19-s + 1.73·23-s − 1.43·25-s + 0.889i·29-s + 1.22·31-s + 0.251i·35-s − 1.20i·37-s + 1.68·41-s + 0.227i·43-s + 1.35·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.024518303\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.024518303\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 17.4iT - 125T^{2} \) |
| 7 | \( 1 + 2.99T + 343T^{2} \) |
| 11 | \( 1 - 10.6iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 43.3iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 37.8T + 4.91e3T^{2} \) |
| 19 | \( 1 + 79.8iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 191.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 138. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 212.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 270. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 441.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 64.1iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 436.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 278. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 830. iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 724. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 859. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 681.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 785.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 1.01e3T + 4.93e5T^{2} \) |
| 83 | \( 1 - 467. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 510.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 234.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.082317791964432618961436192461, −8.696897889485989905644804789777, −7.58020778845096596192826576124, −6.78865748945506162008002634882, −5.64391547531652107107325396367, −4.82315385099333061410254280144, −4.24454605072518016685984935119, −2.85243219494961954132908540998, −1.49508914497466477179276019444, −0.59200752991177752465189296636,
1.03831991580905578803413510145, 2.74695332104695814375032805201, 3.09723682831516419102028626658, 4.28852507159995542693777041533, 5.66678552318488415548793401747, 6.23351540323450038393346052382, 7.21511579718168299776845782335, 7.78261672797151904285233618058, 8.768573805642631131465774585551, 9.965612169736428387958457661649