Properties

Label 8-1152e4-1.1-c3e4-0-8
Degree $8$
Conductor $17612.050\times 10^{8}$
Sign $1$
Analytic cond. $2.13439\times 10^{7}$
Root an. cond. $8.24440$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 176·25-s + 1.37e3·49-s + 2.36e3·73-s + 7.26e3·97-s + 5.32e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8.14e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + ⋯
L(s)  = 1  − 1.40·25-s + 4·49-s + 3.79·73-s + 7.60·97-s + 4·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 3.70·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + 0.000361·197-s + 0.000356·199-s + 0.000326·211-s + 0.000300·223-s + 0.000292·227-s + 0.000288·229-s + 0.000281·233-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(2.13439\times 10^{7}\)
Root analytic conductor: \(8.24440\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 3^{8} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(8.693887746\)
\(L(\frac12)\) \(\approx\) \(8.693887746\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 + 88 T^{2} + p^{6} T^{4} )^{2} \)
7$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
11$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
13$C_2$ \( ( 1 - 92 T + p^{3} T^{2} )^{2}( 1 + 92 T + p^{3} T^{2} )^{2} \)
17$C_2^2$ \( ( 1 - 9776 T^{2} + p^{6} T^{4} )^{2} \)
19$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
23$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
29$C_2^2$ \( ( 1 - 36920 T^{2} + p^{6} T^{4} )^{2} \)
31$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
37$C_2$ \( ( 1 - 214 T + p^{3} T^{2} )^{2}( 1 + 214 T + p^{3} T^{2} )^{2} \)
41$C_2^2$ \( ( 1 - 108560 T^{2} + p^{6} T^{4} )^{2} \)
43$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
47$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
53$C_2^2$ \( ( 1 + 296296 T^{2} + p^{6} T^{4} )^{2} \)
59$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
61$C_2$ \( ( 1 - 830 T + p^{3} T^{2} )^{2}( 1 + 830 T + p^{3} T^{2} )^{2} \)
67$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
71$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
73$C_2$ \( ( 1 - 592 T + p^{3} T^{2} )^{4} \)
79$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
83$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
89$C_2^2$ \( ( 1 + 293920 T^{2} + p^{6} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 1816 T + p^{3} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.74176298642129868513387874180, −6.25508070162468293524301652533, −6.10972274025756106884208621384, −5.99311497958081886867885834939, −5.90600983466363278497301777589, −5.26439620440131178641569128419, −5.24121891518899400473098676302, −5.21822942077086658545227330067, −4.92464325270578547466387448189, −4.43261357054831391304222712084, −4.13875098691493263615770527381, −4.09167988549421074766489940210, −4.02445352339883828502428147576, −3.49678427593935890537568747445, −3.26210936280549966826891035084, −3.10316283318569683037488345431, −2.87127513129457743335255197757, −2.18561971997690489414097174119, −2.11855601009482529338737617193, −1.97815831430881295318384661131, −1.88751110156751028046328377209, −1.05264432791191506259766879986, −0.72361445176203713162755789493, −0.66936967979856754033583082551, −0.42518359673694199852107123200, 0.42518359673694199852107123200, 0.66936967979856754033583082551, 0.72361445176203713162755789493, 1.05264432791191506259766879986, 1.88751110156751028046328377209, 1.97815831430881295318384661131, 2.11855601009482529338737617193, 2.18561971997690489414097174119, 2.87127513129457743335255197757, 3.10316283318569683037488345431, 3.26210936280549966826891035084, 3.49678427593935890537568747445, 4.02445352339883828502428147576, 4.09167988549421074766489940210, 4.13875098691493263615770527381, 4.43261357054831391304222712084, 4.92464325270578547466387448189, 5.21822942077086658545227330067, 5.24121891518899400473098676302, 5.26439620440131178641569128419, 5.90600983466363278497301777589, 5.99311497958081886867885834939, 6.10972274025756106884208621384, 6.25508070162468293524301652533, 6.74176298642129868513387874180

Graph of the $Z$-function along the critical line