Properties

Label 2-1152-8.3-c4-0-49
Degree $2$
Conductor $1152$
Sign $1$
Analytic cond. $119.082$
Root an. cond. $10.9124$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 30.1i·5-s + 52.3i·7-s − 90.0·11-s − 60.3i·13-s + 338·17-s + 6.92·19-s − 732. i·23-s − 287·25-s − 1.29e3i·29-s − 1.30e3i·31-s − 1.57e3·35-s − 241. i·37-s − 578·41-s + 2.02e3·43-s + 2.19e3i·47-s + ⋯
L(s)  = 1  + 1.20i·5-s + 1.06i·7-s − 0.744·11-s − 0.357i·13-s + 1.16·17-s + 0.0191·19-s − 1.38i·23-s − 0.459·25-s − 1.54i·29-s − 1.36i·31-s − 1.28·35-s − 0.176i·37-s − 0.343·41-s + 1.09·43-s + 0.994i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1152\)    =    \(2^{7} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(119.082\)
Root analytic conductor: \(10.9124\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{1152} (703, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1152,\ (\ :2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.882966372\)
\(L(\frac12)\) \(\approx\) \(1.882966372\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 30.1iT - 625T^{2} \)
7 \( 1 - 52.3iT - 2.40e3T^{2} \)
11 \( 1 + 90.0T + 1.46e4T^{2} \)
13 \( 1 + 60.3iT - 2.85e4T^{2} \)
17 \( 1 - 338T + 8.35e4T^{2} \)
19 \( 1 - 6.92T + 1.30e5T^{2} \)
23 \( 1 + 732. iT - 2.79e5T^{2} \)
29 \( 1 + 1.29e3iT - 7.07e5T^{2} \)
31 \( 1 + 1.30e3iT - 9.23e5T^{2} \)
37 \( 1 + 241. iT - 1.87e6T^{2} \)
41 \( 1 + 578T + 2.82e6T^{2} \)
43 \( 1 - 2.02e3T + 3.41e6T^{2} \)
47 \( 1 - 2.19e3iT - 4.87e6T^{2} \)
53 \( 1 + 2.44e3iT - 7.89e6T^{2} \)
59 \( 1 + 1.19e3T + 1.21e7T^{2} \)
61 \( 1 + 6.40e3iT - 1.38e7T^{2} \)
67 \( 1 - 8.26e3T + 2.01e7T^{2} \)
71 \( 1 + 4.28e3iT - 2.54e7T^{2} \)
73 \( 1 - 8.73e3T + 2.83e7T^{2} \)
79 \( 1 - 1.12e4iT - 3.89e7T^{2} \)
83 \( 1 + 1.31e4T + 4.74e7T^{2} \)
89 \( 1 + 910T + 6.27e7T^{2} \)
97 \( 1 - 5.42e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.424332799863417280140971221189, −8.164479743490122971276960061213, −7.78804796839110621378566200477, −6.61674474589300111335588745678, −5.94686567808535132700306766262, −5.15311585862818439236687723050, −3.84302301657577826974050465810, −2.71984505465308676734964285526, −2.32645304898405767077708900964, −0.49336405602045809382064856743, 0.862731231821676076865272957900, 1.51265736608282480410452283864, 3.15158485786315712760027768100, 4.06327483745814172307957654558, 5.06481134329232952090541124165, 5.55800104919344542821395737093, 6.98887869751738839258999824203, 7.57277666712569761963586487521, 8.462973402936904680033032568112, 9.183753411862665859634823558426

Graph of the $Z$-function along the critical line