L(s) = 1 | + 30.1i·5-s + 52.3i·7-s − 90.0·11-s − 60.3i·13-s + 338·17-s + 6.92·19-s − 732. i·23-s − 287·25-s − 1.29e3i·29-s − 1.30e3i·31-s − 1.57e3·35-s − 241. i·37-s − 578·41-s + 2.02e3·43-s + 2.19e3i·47-s + ⋯ |
L(s) = 1 | + 1.20i·5-s + 1.06i·7-s − 0.744·11-s − 0.357i·13-s + 1.16·17-s + 0.0191·19-s − 1.38i·23-s − 0.459·25-s − 1.54i·29-s − 1.36i·31-s − 1.28·35-s − 0.176i·37-s − 0.343·41-s + 1.09·43-s + 0.994i·47-s + ⋯ |
Λ(s)=(=(1152s/2ΓC(s)L(s)Λ(5−s)
Λ(s)=(=(1152s/2ΓC(s+2)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
1152
= 27⋅32
|
Sign: |
1
|
Analytic conductor: |
119.082 |
Root analytic conductor: |
10.9124 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1152(703,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1152, ( :2), 1)
|
Particular Values
L(25) |
≈ |
1.882966372 |
L(21) |
≈ |
1.882966372 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−30.1iT−625T2 |
| 7 | 1−52.3iT−2.40e3T2 |
| 11 | 1+90.0T+1.46e4T2 |
| 13 | 1+60.3iT−2.85e4T2 |
| 17 | 1−338T+8.35e4T2 |
| 19 | 1−6.92T+1.30e5T2 |
| 23 | 1+732.iT−2.79e5T2 |
| 29 | 1+1.29e3iT−7.07e5T2 |
| 31 | 1+1.30e3iT−9.23e5T2 |
| 37 | 1+241.iT−1.87e6T2 |
| 41 | 1+578T+2.82e6T2 |
| 43 | 1−2.02e3T+3.41e6T2 |
| 47 | 1−2.19e3iT−4.87e6T2 |
| 53 | 1+2.44e3iT−7.89e6T2 |
| 59 | 1+1.19e3T+1.21e7T2 |
| 61 | 1+6.40e3iT−1.38e7T2 |
| 67 | 1−8.26e3T+2.01e7T2 |
| 71 | 1+4.28e3iT−2.54e7T2 |
| 73 | 1−8.73e3T+2.83e7T2 |
| 79 | 1−1.12e4iT−3.89e7T2 |
| 83 | 1+1.31e4T+4.74e7T2 |
| 89 | 1+910T+6.27e7T2 |
| 97 | 1−5.42e3T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.424332799863417280140971221189, −8.164479743490122971276960061213, −7.78804796839110621378566200477, −6.61674474589300111335588745678, −5.94686567808535132700306766262, −5.15311585862818439236687723050, −3.84302301657577826974050465810, −2.71984505465308676734964285526, −2.32645304898405767077708900964, −0.49336405602045809382064856743,
0.862731231821676076865272957900, 1.51265736608282480410452283864, 3.15158485786315712760027768100, 4.06327483745814172307957654558, 5.06481134329232952090541124165, 5.55800104919344542821395737093, 6.98887869751738839258999824203, 7.57277666712569761963586487521, 8.462973402936904680033032568112, 9.183753411862665859634823558426