Properties

Label 2-1160-1.1-c3-0-64
Degree $2$
Conductor $1160$
Sign $1$
Analytic cond. $68.4422$
Root an. cond. $8.27298$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.86·3-s + 5·5-s + 34.7·7-s + 7.34·9-s + 70.0·11-s − 10.1·13-s + 29.3·15-s + 104.·17-s + 162.·19-s + 203.·21-s − 161.·23-s + 25·25-s − 115.·27-s − 29·29-s − 315.·31-s + 410.·33-s + 173.·35-s − 57.1·37-s − 59.7·39-s + 180.·41-s − 304.·43-s + 36.7·45-s − 268.·47-s + 867.·49-s + 615.·51-s − 552.·53-s + 350.·55-s + ⋯
L(s)  = 1  + 1.12·3-s + 0.447·5-s + 1.87·7-s + 0.271·9-s + 1.92·11-s − 0.217·13-s + 0.504·15-s + 1.49·17-s + 1.95·19-s + 2.11·21-s − 1.46·23-s + 0.200·25-s − 0.821·27-s − 0.185·29-s − 1.82·31-s + 2.16·33-s + 0.840·35-s − 0.253·37-s − 0.245·39-s + 0.685·41-s − 1.07·43-s + 0.121·45-s − 0.832·47-s + 2.52·49-s + 1.68·51-s − 1.43·53-s + 0.859·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1160\)    =    \(2^{3} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(68.4422\)
Root analytic conductor: \(8.27298\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1160,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.200069442\)
\(L(\frac12)\) \(\approx\) \(5.200069442\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 5T \)
29 \( 1 + 29T \)
good3 \( 1 - 5.86T + 27T^{2} \)
7 \( 1 - 34.7T + 343T^{2} \)
11 \( 1 - 70.0T + 1.33e3T^{2} \)
13 \( 1 + 10.1T + 2.19e3T^{2} \)
17 \( 1 - 104.T + 4.91e3T^{2} \)
19 \( 1 - 162.T + 6.85e3T^{2} \)
23 \( 1 + 161.T + 1.21e4T^{2} \)
31 \( 1 + 315.T + 2.97e4T^{2} \)
37 \( 1 + 57.1T + 5.06e4T^{2} \)
41 \( 1 - 180.T + 6.89e4T^{2} \)
43 \( 1 + 304.T + 7.95e4T^{2} \)
47 \( 1 + 268.T + 1.03e5T^{2} \)
53 \( 1 + 552.T + 1.48e5T^{2} \)
59 \( 1 + 330.T + 2.05e5T^{2} \)
61 \( 1 + 54.0T + 2.26e5T^{2} \)
67 \( 1 - 266.T + 3.00e5T^{2} \)
71 \( 1 - 161.T + 3.57e5T^{2} \)
73 \( 1 + 1.05e3T + 3.89e5T^{2} \)
79 \( 1 - 49.7T + 4.93e5T^{2} \)
83 \( 1 + 612.T + 5.71e5T^{2} \)
89 \( 1 - 701.T + 7.04e5T^{2} \)
97 \( 1 + 1.20e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.393299696417880895162036432887, −8.578428815313720289753652413467, −7.81296962118849967302686481955, −7.33129442192662607429070329738, −5.89651058284467259215115410069, −5.14850697573263067702296159322, −3.99007393524597543987701420604, −3.22541424449192871775818944751, −1.74976667164370701495059073951, −1.40030347431421034848539053090, 1.40030347431421034848539053090, 1.74976667164370701495059073951, 3.22541424449192871775818944751, 3.99007393524597543987701420604, 5.14850697573263067702296159322, 5.89651058284467259215115410069, 7.33129442192662607429070329738, 7.81296962118849967302686481955, 8.578428815313720289753652413467, 9.393299696417880895162036432887

Graph of the $Z$-function along the critical line