L(s) = 1 | − 2·7-s − 16-s − 2·19-s + 2·31-s + 2·37-s + 2·49-s − 2·67-s − 2·73-s + 2·97-s − 2·109-s + 2·112-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
L(s) = 1 | − 2·7-s − 16-s − 2·19-s + 2·31-s + 2·37-s + 2·49-s − 2·67-s − 2·73-s + 2·97-s − 2·109-s + 2·112-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
Λ(s)=(=(13689s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(13689s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
13689
= 34⋅132
|
Sign: |
1
|
Analytic conductor: |
0.00340946 |
Root analytic conductor: |
0.241641 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 13689, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
0.3101862578 |
L(21) |
≈ |
0.3101862578 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.80990494819017442544207341531, −13.36001136281506947321561544962, −13.05270677275964737188948525381, −12.72164914596868163355269831842, −11.93499686341665259569750108108, −11.67036785348349858475122944719, −10.65262963256653539214358760704, −10.52450589542211795910627174439, −9.701049372459152198528131483308, −9.460599077616326652932631890719, −8.744582829751551591102352480621, −8.287424301189132676813928040431, −7.37991611206024721121675636931, −6.74227370788945589021286031122, −6.18811586118836933892295665132, −6.02436325627031227717949276801, −4.57945296969333583056588158114, −4.21585912692895745454493259751, −3.10156635655119368499674695018, −2.45453865405386386796231817165,
2.45453865405386386796231817165, 3.10156635655119368499674695018, 4.21585912692895745454493259751, 4.57945296969333583056588158114, 6.02436325627031227717949276801, 6.18811586118836933892295665132, 6.74227370788945589021286031122, 7.37991611206024721121675636931, 8.287424301189132676813928040431, 8.744582829751551591102352480621, 9.460599077616326652932631890719, 9.701049372459152198528131483308, 10.52450589542211795910627174439, 10.65262963256653539214358760704, 11.67036785348349858475122944719, 11.93499686341665259569750108108, 12.72164914596868163355269831842, 13.05270677275964737188948525381, 13.36001136281506947321561544962, 13.80990494819017442544207341531