Properties

Label 2-117-117.110-c1-0-10
Degree 22
Conductor 117117
Sign 0.966+0.256i-0.966 + 0.256i
Analytic cond. 0.9342490.934249
Root an. cond. 0.9665650.966565
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.562 − 2.09i)2-s + (−1.57 − 0.717i)3-s + (−2.35 − 1.35i)4-s + (−0.142 + 0.529i)5-s + (−2.39 + 2.90i)6-s + (−3.03 − 3.03i)7-s + (−1.10 + 1.10i)8-s + (1.97 + 2.26i)9-s + (1.03 + 0.595i)10-s + (3.61 + 0.969i)11-s + (2.73 + 3.83i)12-s + (2.50 − 2.59i)13-s + (−8.06 + 4.65i)14-s + (0.604 − 0.733i)15-s + (−1.02 − 1.77i)16-s + (0.784 + 1.35i)17-s + ⋯
L(s)  = 1  + (0.397 − 1.48i)2-s + (−0.910 − 0.414i)3-s + (−1.17 − 0.679i)4-s + (−0.0635 + 0.237i)5-s + (−0.976 + 1.18i)6-s + (−1.14 − 1.14i)7-s + (−0.389 + 0.389i)8-s + (0.656 + 0.754i)9-s + (0.326 + 0.188i)10-s + (1.09 + 0.292i)11-s + (0.789 + 1.10i)12-s + (0.694 − 0.719i)13-s + (−2.15 + 1.24i)14-s + (0.155 − 0.189i)15-s + (−0.256 − 0.443i)16-s + (0.190 + 0.329i)17-s + ⋯

Functional equation

Λ(s)=(117s/2ΓC(s)L(s)=((0.966+0.256i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.966 + 0.256i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(117s/2ΓC(s+1/2)L(s)=((0.966+0.256i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.966 + 0.256i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 117117    =    32133^{2} \cdot 13
Sign: 0.966+0.256i-0.966 + 0.256i
Analytic conductor: 0.9342490.934249
Root analytic conductor: 0.9665650.966565
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ117(110,)\chi_{117} (110, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 117, ( :1/2), 0.966+0.256i)(2,\ 117,\ (\ :1/2),\ -0.966 + 0.256i)

Particular Values

L(1)L(1) \approx 0.1149770.883211i0.114977 - 0.883211i
L(12)L(\frac12) \approx 0.1149770.883211i0.114977 - 0.883211i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(1.57+0.717i)T 1 + (1.57 + 0.717i)T
13 1+(2.50+2.59i)T 1 + (-2.50 + 2.59i)T
good2 1+(0.562+2.09i)T+(1.73i)T2 1 + (-0.562 + 2.09i)T + (-1.73 - i)T^{2}
5 1+(0.1420.529i)T+(4.332.5i)T2 1 + (0.142 - 0.529i)T + (-4.33 - 2.5i)T^{2}
7 1+(3.03+3.03i)T+7iT2 1 + (3.03 + 3.03i)T + 7iT^{2}
11 1+(3.610.969i)T+(9.52+5.5i)T2 1 + (-3.61 - 0.969i)T + (9.52 + 5.5i)T^{2}
17 1+(0.7841.35i)T+(8.5+14.7i)T2 1 + (-0.784 - 1.35i)T + (-8.5 + 14.7i)T^{2}
19 1+(3.27+0.876i)T+(16.4+9.5i)T2 1 + (3.27 + 0.876i)T + (16.4 + 9.5i)T^{2}
23 15.03T+23T2 1 - 5.03T + 23T^{2}
29 1+(1.020.593i)T+(14.525.1i)T2 1 + (1.02 - 0.593i)T + (14.5 - 25.1i)T^{2}
31 1+(1.47+0.395i)T+(26.8+15.5i)T2 1 + (1.47 + 0.395i)T + (26.8 + 15.5i)T^{2}
37 1+(1.31+0.351i)T+(32.018.5i)T2 1 + (-1.31 + 0.351i)T + (32.0 - 18.5i)T^{2}
41 1+(3.763.76i)T+41iT2 1 + (-3.76 - 3.76i)T + 41iT^{2}
43 110.3iT43T2 1 - 10.3iT - 43T^{2}
47 1+(1.82+6.81i)T+(40.7+23.5i)T2 1 + (1.82 + 6.81i)T + (-40.7 + 23.5i)T^{2}
53 15.04iT53T2 1 - 5.04iT - 53T^{2}
59 1+(2.8010.4i)T+(51.0+29.5i)T2 1 + (-2.80 - 10.4i)T + (-51.0 + 29.5i)T^{2}
61 1+5.93T+61T2 1 + 5.93T + 61T^{2}
67 1+(2.25+2.25i)T67iT2 1 + (-2.25 + 2.25i)T - 67iT^{2}
71 1+(0.7742.89i)T+(61.435.5i)T2 1 + (0.774 - 2.89i)T + (-61.4 - 35.5i)T^{2}
73 1+(9.10+9.10i)T+73iT2 1 + (9.10 + 9.10i)T + 73iT^{2}
79 1+(7.18+12.4i)T+(39.568.4i)T2 1 + (-7.18 + 12.4i)T + (-39.5 - 68.4i)T^{2}
83 1+(13.7+3.67i)T+(71.841.5i)T2 1 + (-13.7 + 3.67i)T + (71.8 - 41.5i)T^{2}
89 1+(1.63+6.09i)T+(77.0+44.5i)T2 1 + (1.63 + 6.09i)T + (-77.0 + 44.5i)T^{2}
97 1+(2.31+2.31i)T97iT2 1 + (-2.31 + 2.31i)T - 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.12825991590670402008838635017, −12.02954403287060479236763634170, −10.90743180601369050631020579634, −10.51217430166102823218567074010, −9.360279443653027490533213843384, −7.24443509617392358682893600792, −6.27753700507350748606955153923, −4.46039529304288451619343806426, −3.31425686627339240584302105395, −1.09518927662725221292613882711, 3.91251047114714827228617894651, 5.28163574451157767498164207305, 6.28955747290940900241178799664, 6.77845538728736641771687700529, 8.736105246396045445599896586751, 9.346379296865148734988878386839, 11.03011209879660746813479866075, 12.19299437751694055051367182074, 13.01152091295700962877733925484, 14.33141301243837676362313387576

Graph of the ZZ-function along the critical line