L(s) = 1 | + (−1.02 − 0.275i)2-s + (−1.73 + 0.00536i)3-s + (−0.747 − 0.431i)4-s + (2.22 + 0.595i)5-s + (1.78 + 0.472i)6-s + (−3.66 + 3.66i)7-s + (2.15 + 2.15i)8-s + (2.99 − 0.0185i)9-s + (−2.12 − 1.22i)10-s + (−0.708 + 2.64i)11-s + (1.29 + 0.743i)12-s + (−2.69 + 2.39i)13-s + (4.78 − 2.76i)14-s + (−3.85 − 1.01i)15-s + (−0.764 − 1.32i)16-s + (−0.0716 − 0.124i)17-s + ⋯ |
L(s) = 1 | + (−0.728 − 0.195i)2-s + (−0.999 + 0.00309i)3-s + (−0.373 − 0.215i)4-s + (0.993 + 0.266i)5-s + (0.728 + 0.192i)6-s + (−1.38 + 1.38i)7-s + (0.763 + 0.763i)8-s + (0.999 − 0.00619i)9-s + (−0.671 − 0.387i)10-s + (−0.213 + 0.797i)11-s + (0.374 + 0.214i)12-s + (−0.747 + 0.664i)13-s + (1.27 − 0.737i)14-s + (−0.994 − 0.263i)15-s + (−0.191 − 0.331i)16-s + (−0.0173 − 0.0300i)17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(−0.0602−0.998i)Λ(2−s)
Λ(s)=(=(117s/2ΓC(s+1/2)L(s)(−0.0602−0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
−0.0602−0.998i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(20,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1/2), −0.0602−0.998i)
|
Particular Values
L(1) |
≈ |
0.255758+0.271668i |
L(21) |
≈ |
0.255758+0.271668i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.73−0.00536i)T |
| 13 | 1+(2.69−2.39i)T |
good | 2 | 1+(1.02+0.275i)T+(1.73+i)T2 |
| 5 | 1+(−2.22−0.595i)T+(4.33+2.5i)T2 |
| 7 | 1+(3.66−3.66i)T−7iT2 |
| 11 | 1+(0.708−2.64i)T+(−9.52−5.5i)T2 |
| 17 | 1+(0.0716+0.124i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−0.552+2.06i)T+(−16.4−9.5i)T2 |
| 23 | 1−0.843T+23T2 |
| 29 | 1+(−0.523+0.302i)T+(14.5−25.1i)T2 |
| 31 | 1+(0.905−3.38i)T+(−26.8−15.5i)T2 |
| 37 | 1+(−0.973−3.63i)T+(−32.0+18.5i)T2 |
| 41 | 1+(5.53−5.53i)T−41iT2 |
| 43 | 1+0.216iT−43T2 |
| 47 | 1+(−10.1+2.72i)T+(40.7−23.5i)T2 |
| 53 | 1−8.00iT−53T2 |
| 59 | 1+(−7.19+1.92i)T+(51.0−29.5i)T2 |
| 61 | 1+1.35T+61T2 |
| 67 | 1+(−5.41−5.41i)T+67iT2 |
| 71 | 1+(−7.04−1.88i)T+(61.4+35.5i)T2 |
| 73 | 1+(3.76−3.76i)T−73iT2 |
| 79 | 1+(−1.62+2.81i)T+(−39.5−68.4i)T2 |
| 83 | 1+(3.94+14.7i)T+(−71.8+41.5i)T2 |
| 89 | 1+(−14.2+3.81i)T+(77.0−44.5i)T2 |
| 97 | 1+(0.384+0.384i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.55179374779226921958271347477, −12.64803616129900607347726563857, −11.71457804718099417373654284329, −10.22544134324124806882411040354, −9.756852369191603898379801518154, −8.992886105577169873852770027172, −6.99027441796383237487896515636, −5.93906176054755214611274240389, −4.93954795101334370904259628374, −2.23753387386426308761858275196,
0.57955395697280556600847055186, 3.83038790592677598009065727992, 5.46243675510767464930568099660, 6.66741994761423500589561260182, 7.67119790295221443841111032024, 9.376464946810177573490934186101, 10.05252772650841819394016288526, 10.68136639686878911858834803366, 12.51381850182485642913915219396, 13.20608429269621993405266921701