L(s) = 1 | + (−1.02 + 0.275i)2-s + (−1.73 − 0.00536i)3-s + (−0.747 + 0.431i)4-s + (2.22 − 0.595i)5-s + (1.78 − 0.472i)6-s + (−3.66 − 3.66i)7-s + (2.15 − 2.15i)8-s + (2.99 + 0.0185i)9-s + (−2.12 + 1.22i)10-s + (−0.708 − 2.64i)11-s + (1.29 − 0.743i)12-s + (−2.69 − 2.39i)13-s + (4.78 + 2.76i)14-s + (−3.85 + 1.01i)15-s + (−0.764 + 1.32i)16-s + (−0.0716 + 0.124i)17-s + ⋯ |
L(s) = 1 | + (−0.728 + 0.195i)2-s + (−0.999 − 0.00309i)3-s + (−0.373 + 0.215i)4-s + (0.993 − 0.266i)5-s + (0.728 − 0.192i)6-s + (−1.38 − 1.38i)7-s + (0.763 − 0.763i)8-s + (0.999 + 0.00619i)9-s + (−0.671 + 0.387i)10-s + (−0.213 − 0.797i)11-s + (0.374 − 0.214i)12-s + (−0.747 − 0.664i)13-s + (1.27 + 0.737i)14-s + (−0.994 + 0.263i)15-s + (−0.191 + 0.331i)16-s + (−0.0173 + 0.0300i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0602 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0602 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.255758 - 0.271668i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.255758 - 0.271668i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.73 + 0.00536i)T \) |
| 13 | \( 1 + (2.69 + 2.39i)T \) |
good | 2 | \( 1 + (1.02 - 0.275i)T + (1.73 - i)T^{2} \) |
| 5 | \( 1 + (-2.22 + 0.595i)T + (4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (3.66 + 3.66i)T + 7iT^{2} \) |
| 11 | \( 1 + (0.708 + 2.64i)T + (-9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (0.0716 - 0.124i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.552 - 2.06i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 - 0.843T + 23T^{2} \) |
| 29 | \( 1 + (-0.523 - 0.302i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.905 + 3.38i)T + (-26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (-0.973 + 3.63i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (5.53 + 5.53i)T + 41iT^{2} \) |
| 43 | \( 1 - 0.216iT - 43T^{2} \) |
| 47 | \( 1 + (-10.1 - 2.72i)T + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + 8.00iT - 53T^{2} \) |
| 59 | \( 1 + (-7.19 - 1.92i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + 1.35T + 61T^{2} \) |
| 67 | \( 1 + (-5.41 + 5.41i)T - 67iT^{2} \) |
| 71 | \( 1 + (-7.04 + 1.88i)T + (61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (3.76 + 3.76i)T + 73iT^{2} \) |
| 79 | \( 1 + (-1.62 - 2.81i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.94 - 14.7i)T + (-71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (-14.2 - 3.81i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (0.384 - 0.384i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.20608429269621993405266921701, −12.51381850182485642913915219396, −10.68136639686878911858834803366, −10.05252772650841819394016288526, −9.376464946810177573490934186101, −7.67119790295221443841111032024, −6.66741994761423500589561260182, −5.46243675510767464930568099660, −3.83038790592677598009065727992, −0.57955395697280556600847055186,
2.23753387386426308761858275196, 4.93954795101334370904259628374, 5.93906176054755214611274240389, 6.99027441796383237487896515636, 8.992886105577169873852770027172, 9.756852369191603898379801518154, 10.22544134324124806882411040354, 11.71457804718099417373654284329, 12.64803616129900607347726563857, 13.55179374779226921958271347477