L(s) = 1 | + (−1.02 + 0.275i)2-s + (−1.73 − 0.00536i)3-s + (−0.747 + 0.431i)4-s + (2.22 − 0.595i)5-s + (1.78 − 0.472i)6-s + (−3.66 − 3.66i)7-s + (2.15 − 2.15i)8-s + (2.99 + 0.0185i)9-s + (−2.12 + 1.22i)10-s + (−0.708 − 2.64i)11-s + (1.29 − 0.743i)12-s + (−2.69 − 2.39i)13-s + (4.78 + 2.76i)14-s + (−3.85 + 1.01i)15-s + (−0.764 + 1.32i)16-s + (−0.0716 + 0.124i)17-s + ⋯ |
L(s) = 1 | + (−0.728 + 0.195i)2-s + (−0.999 − 0.00309i)3-s + (−0.373 + 0.215i)4-s + (0.993 − 0.266i)5-s + (0.728 − 0.192i)6-s + (−1.38 − 1.38i)7-s + (0.763 − 0.763i)8-s + (0.999 + 0.00619i)9-s + (−0.671 + 0.387i)10-s + (−0.213 − 0.797i)11-s + (0.374 − 0.214i)12-s + (−0.747 − 0.664i)13-s + (1.27 + 0.737i)14-s + (−0.994 + 0.263i)15-s + (−0.191 + 0.331i)16-s + (−0.0173 + 0.0300i)17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(−0.0602+0.998i)Λ(2−s)
Λ(s)=(=(117s/2ΓC(s+1/2)L(s)(−0.0602+0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
−0.0602+0.998i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(41,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1/2), −0.0602+0.998i)
|
Particular Values
L(1) |
≈ |
0.255758−0.271668i |
L(21) |
≈ |
0.255758−0.271668i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.73+0.00536i)T |
| 13 | 1+(2.69+2.39i)T |
good | 2 | 1+(1.02−0.275i)T+(1.73−i)T2 |
| 5 | 1+(−2.22+0.595i)T+(4.33−2.5i)T2 |
| 7 | 1+(3.66+3.66i)T+7iT2 |
| 11 | 1+(0.708+2.64i)T+(−9.52+5.5i)T2 |
| 17 | 1+(0.0716−0.124i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.552−2.06i)T+(−16.4+9.5i)T2 |
| 23 | 1−0.843T+23T2 |
| 29 | 1+(−0.523−0.302i)T+(14.5+25.1i)T2 |
| 31 | 1+(0.905+3.38i)T+(−26.8+15.5i)T2 |
| 37 | 1+(−0.973+3.63i)T+(−32.0−18.5i)T2 |
| 41 | 1+(5.53+5.53i)T+41iT2 |
| 43 | 1−0.216iT−43T2 |
| 47 | 1+(−10.1−2.72i)T+(40.7+23.5i)T2 |
| 53 | 1+8.00iT−53T2 |
| 59 | 1+(−7.19−1.92i)T+(51.0+29.5i)T2 |
| 61 | 1+1.35T+61T2 |
| 67 | 1+(−5.41+5.41i)T−67iT2 |
| 71 | 1+(−7.04+1.88i)T+(61.4−35.5i)T2 |
| 73 | 1+(3.76+3.76i)T+73iT2 |
| 79 | 1+(−1.62−2.81i)T+(−39.5+68.4i)T2 |
| 83 | 1+(3.94−14.7i)T+(−71.8−41.5i)T2 |
| 89 | 1+(−14.2−3.81i)T+(77.0+44.5i)T2 |
| 97 | 1+(0.384−0.384i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.20608429269621993405266921701, −12.51381850182485642913915219396, −10.68136639686878911858834803366, −10.05252772650841819394016288526, −9.376464946810177573490934186101, −7.67119790295221443841111032024, −6.66741994761423500589561260182, −5.46243675510767464930568099660, −3.83038790592677598009065727992, −0.57955395697280556600847055186,
2.23753387386426308761858275196, 4.93954795101334370904259628374, 5.93906176054755214611274240389, 6.99027441796383237487896515636, 8.992886105577169873852770027172, 9.756852369191603898379801518154, 10.22544134324124806882411040354, 11.71457804718099417373654284329, 12.64803616129900607347726563857, 13.55179374779226921958271347477