L(s) = 1 | + (0.0826 − 0.0221i)2-s + (0.405 + 1.68i)3-s + (−1.72 + 0.996i)4-s + (1.73 − 0.466i)5-s + (0.0707 + 0.130i)6-s + (0.362 + 0.362i)7-s + (−0.241 + 0.241i)8-s + (−2.67 + 1.36i)9-s + (0.133 − 0.0770i)10-s + (1.48 + 5.53i)11-s + (−2.37 − 2.50i)12-s + (−0.119 − 3.60i)13-s + (0.0379 + 0.0219i)14-s + (1.48 + 2.74i)15-s + (1.97 − 3.42i)16-s + (2.73 − 4.74i)17-s + ⋯ |
L(s) = 1 | + (0.0584 − 0.0156i)2-s + (0.233 + 0.972i)3-s + (−0.862 + 0.498i)4-s + (0.777 − 0.208i)5-s + (0.0288 + 0.0531i)6-s + (0.136 + 0.136i)7-s + (−0.0853 + 0.0853i)8-s + (−0.890 + 0.454i)9-s + (0.0421 − 0.0243i)10-s + (0.447 + 1.66i)11-s + (−0.686 − 0.722i)12-s + (−0.0332 − 0.999i)13-s + (0.0101 + 0.00585i)14-s + (0.384 + 0.707i)15-s + (0.494 − 0.856i)16-s + (0.663 − 1.14i)17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.382−0.923i)Λ(2−s)
Λ(s)=(=(117s/2ΓC(s+1/2)L(s)(0.382−0.923i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.382−0.923i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(41,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1/2), 0.382−0.923i)
|
Particular Values
L(1) |
≈ |
0.899619+0.601013i |
L(21) |
≈ |
0.899619+0.601013i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.405−1.68i)T |
| 13 | 1+(0.119+3.60i)T |
good | 2 | 1+(−0.0826+0.0221i)T+(1.73−i)T2 |
| 5 | 1+(−1.73+0.466i)T+(4.33−2.5i)T2 |
| 7 | 1+(−0.362−0.362i)T+7iT2 |
| 11 | 1+(−1.48−5.53i)T+(−9.52+5.5i)T2 |
| 17 | 1+(−2.73+4.74i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.92+7.17i)T+(−16.4+9.5i)T2 |
| 23 | 1−4.43T+23T2 |
| 29 | 1+(−0.446−0.257i)T+(14.5+25.1i)T2 |
| 31 | 1+(−0.854−3.18i)T+(−26.8+15.5i)T2 |
| 37 | 1+(0.815−3.04i)T+(−32.0−18.5i)T2 |
| 41 | 1+(1.97+1.97i)T+41iT2 |
| 43 | 1−2.09iT−43T2 |
| 47 | 1+(4.06+1.08i)T+(40.7+23.5i)T2 |
| 53 | 1−8.79iT−53T2 |
| 59 | 1+(−7.47−2.00i)T+(51.0+29.5i)T2 |
| 61 | 1+5.79T+61T2 |
| 67 | 1+(3.78−3.78i)T−67iT2 |
| 71 | 1+(2.49−0.668i)T+(61.4−35.5i)T2 |
| 73 | 1+(4.21+4.21i)T+73iT2 |
| 79 | 1+(2.43+4.20i)T+(−39.5+68.4i)T2 |
| 83 | 1+(0.879−3.28i)T+(−71.8−41.5i)T2 |
| 89 | 1+(10.8+2.90i)T+(77.0+44.5i)T2 |
| 97 | 1+(1.56−1.56i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.70812977730793009421331694727, −12.88881226204245830541152717905, −11.73175082916765137708568108868, −10.20652234201906845179385271069, −9.488217687072945090883411026209, −8.754218936093945266443235422101, −7.30481933082032617143508969696, −5.25513389688950504716651635709, −4.61417131389974173991234271356, −2.91010402478407962891029983903,
1.51597348080417927992314190880, 3.70218679983023759125284803709, 5.77158690682178030871000058272, 6.31608307121196184058266203225, 8.124195627414708169028494960772, 8.918161076508812338040249609590, 10.09667248374199745858143004971, 11.31342988667296218104894409960, 12.60501789449499822439418377412, 13.54809398293390575699594912117