L(s) = 1 | + (−0.137 − 0.513i)2-s + (1.52 + 0.827i)3-s + (1.48 − 0.858i)4-s + (−0.764 − 2.85i)5-s + (0.215 − 0.894i)6-s + (−2.81 + 2.81i)7-s + (−1.39 − 1.39i)8-s + (1.63 + 2.51i)9-s + (−1.35 + 0.784i)10-s + (1.93 − 0.519i)11-s + (2.97 − 0.0757i)12-s + (−2.59 + 2.50i)13-s + (1.83 + 1.05i)14-s + (1.19 − 4.97i)15-s + (1.19 − 2.06i)16-s + (−2.38 + 4.12i)17-s + ⋯ |
L(s) = 1 | + (−0.0972 − 0.362i)2-s + (0.878 + 0.477i)3-s + (0.743 − 0.429i)4-s + (−0.341 − 1.27i)5-s + (0.0879 − 0.365i)6-s + (−1.06 + 1.06i)7-s + (−0.493 − 0.493i)8-s + (0.543 + 0.839i)9-s + (−0.429 + 0.248i)10-s + (0.584 − 0.156i)11-s + (0.858 − 0.0218i)12-s + (−0.720 + 0.693i)13-s + (0.490 + 0.283i)14-s + (0.309 − 1.28i)15-s + (0.298 − 0.516i)16-s + (−0.577 + 1.00i)17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.857+0.514i)Λ(2−s)
Λ(s)=(=(117s/2ΓC(s+1/2)L(s)(0.857+0.514i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.857+0.514i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(50,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1/2), 0.857+0.514i)
|
Particular Values
L(1) |
≈ |
1.24642−0.344964i |
L(21) |
≈ |
1.24642−0.344964i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.52−0.827i)T |
| 13 | 1+(2.59−2.50i)T |
good | 2 | 1+(0.137+0.513i)T+(−1.73+i)T2 |
| 5 | 1+(0.764+2.85i)T+(−4.33+2.5i)T2 |
| 7 | 1+(2.81−2.81i)T−7iT2 |
| 11 | 1+(−1.93+0.519i)T+(9.52−5.5i)T2 |
| 17 | 1+(2.38−4.12i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−3.57+0.958i)T+(16.4−9.5i)T2 |
| 23 | 1+0.938T+23T2 |
| 29 | 1+(3.82+2.20i)T+(14.5+25.1i)T2 |
| 31 | 1+(0.0653−0.0175i)T+(26.8−15.5i)T2 |
| 37 | 1+(0.00215+0.000576i)T+(32.0+18.5i)T2 |
| 41 | 1+(5.69−5.69i)T−41iT2 |
| 43 | 1+9.98iT−43T2 |
| 47 | 1+(−1.52+5.69i)T+(−40.7−23.5i)T2 |
| 53 | 1+7.99iT−53T2 |
| 59 | 1+(−1.12+4.21i)T+(−51.0−29.5i)T2 |
| 61 | 1−12.3T+61T2 |
| 67 | 1+(0.773+0.773i)T+67iT2 |
| 71 | 1+(−4.06−15.1i)T+(−61.4+35.5i)T2 |
| 73 | 1+(−0.854+0.854i)T−73iT2 |
| 79 | 1+(0.501+0.868i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−7.70−2.06i)T+(71.8+41.5i)T2 |
| 89 | 1+(0.189−0.708i)T+(−77.0−44.5i)T2 |
| 97 | 1+(−3.74−3.74i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.25012989915545562176968187316, −12.35673745253753918891535642911, −11.55509384819544424753852861016, −9.943954059661916152486204269100, −9.287231929425512324880797742498, −8.470150905628942957713529519930, −6.80677047820002188970576342453, −5.33941681845534210603754722541, −3.71893607440976739381802980234, −2.13410334660338962379432314476,
2.78913912683301661534737580827, 3.59387305837894436687106784115, 6.46982878878285917350396718887, 7.18546716779194736897495606275, 7.65025555328892502316003229937, 9.367052639282205563556006733812, 10.42412310213625408275124041825, 11.61345724726394065071719712833, 12.68944481002571559799705985905, 13.80096114436670297556191737339