L(s) = 1 | + (0.602 + 1.04i)2-s + (−1.54 − 0.788i)3-s + (0.274 − 0.476i)4-s + (1.89 + 3.27i)5-s + (−0.106 − 2.08i)6-s + 0.300·7-s + 3.07·8-s + (1.75 + 2.43i)9-s + (−2.27 + 3.94i)10-s + (−0.642 − 1.11i)11-s + (−0.799 + 0.517i)12-s + (−3.31 − 1.42i)13-s + (0.180 + 0.313i)14-s + (−0.333 − 6.54i)15-s + (1.29 + 2.25i)16-s + (−2.63 − 4.56i)17-s + ⋯ |
L(s) = 1 | + (0.425 + 0.737i)2-s + (−0.890 − 0.455i)3-s + (0.137 − 0.238i)4-s + (0.846 + 1.46i)5-s + (−0.0433 − 0.850i)6-s + 0.113·7-s + 1.08·8-s + (0.585 + 0.810i)9-s + (−0.720 + 1.24i)10-s + (−0.193 − 0.335i)11-s + (−0.230 + 0.149i)12-s + (−0.918 − 0.394i)13-s + (0.0483 + 0.0837i)14-s + (−0.0861 − 1.68i)15-s + (0.324 + 0.562i)16-s + (−0.639 − 1.10i)17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.679−0.733i)Λ(2−s)
Λ(s)=(=(117s/2ΓC(s+1/2)L(s)(0.679−0.733i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.679−0.733i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(61,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1/2), 0.679−0.733i)
|
Particular Values
L(1) |
≈ |
1.09688+0.479463i |
L(21) |
≈ |
1.09688+0.479463i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.54+0.788i)T |
| 13 | 1+(3.31+1.42i)T |
good | 2 | 1+(−0.602−1.04i)T+(−1+1.73i)T2 |
| 5 | 1+(−1.89−3.27i)T+(−2.5+4.33i)T2 |
| 7 | 1−0.300T+7T2 |
| 11 | 1+(0.642+1.11i)T+(−5.5+9.52i)T2 |
| 17 | 1+(2.63+4.56i)T+(−8.5+14.7i)T2 |
| 19 | 1+(0.829+1.43i)T+(−9.5+16.4i)T2 |
| 23 | 1+3.34T+23T2 |
| 29 | 1+(−4.81−8.34i)T+(−14.5+25.1i)T2 |
| 31 | 1+(3.29+5.71i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−1.97+3.42i)T+(−18.5−32.0i)T2 |
| 41 | 1−2.86T+41T2 |
| 43 | 1+0.0208T+43T2 |
| 47 | 1+(−0.954+1.65i)T+(−23.5−40.7i)T2 |
| 53 | 1+7.15T+53T2 |
| 59 | 1+(4.36−7.56i)T+(−29.5−51.0i)T2 |
| 61 | 1−5.13T+61T2 |
| 67 | 1−8.31T+67T2 |
| 71 | 1+(−4.64−8.03i)T+(−35.5+61.4i)T2 |
| 73 | 1+4.69T+73T2 |
| 79 | 1+(−6.65+11.5i)T+(−39.5−68.4i)T2 |
| 83 | 1+(6.45−11.1i)T+(−41.5−71.8i)T2 |
| 89 | 1+(−3.19+5.54i)T+(−44.5−77.0i)T2 |
| 97 | 1+3.76T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.92018510801060379968052741099, −12.91411974129902714982462974219, −11.36970532903384492988146875599, −10.69363334835718735991837114827, −9.818079445174680622180795458007, −7.52535346946499569560748206724, −6.82831642156906060147661831081, −5.97158360607860060507307379422, −4.97282338417640281912927747292, −2.36930153080129256176389279579,
1.84337873332427114977916967759, 4.25204181537777910375218626319, 4.98458042714141340039622862644, 6.35288860106198118873228556418, 8.127683429415816687552642823064, 9.544204175497295497816605956212, 10.33664635562639490140654795396, 11.55577485214670713905627475655, 12.51279110101184115222182364572, 12.82407002170517515528318786705