L(s) = 1 | + (0.602 + 1.04i)2-s + (−1.54 − 0.788i)3-s + (0.274 − 0.476i)4-s + (1.89 + 3.27i)5-s + (−0.106 − 2.08i)6-s + 0.300·7-s + 3.07·8-s + (1.75 + 2.43i)9-s + (−2.27 + 3.94i)10-s + (−0.642 − 1.11i)11-s + (−0.799 + 0.517i)12-s + (−3.31 − 1.42i)13-s + (0.180 + 0.313i)14-s + (−0.333 − 6.54i)15-s + (1.29 + 2.25i)16-s + (−2.63 − 4.56i)17-s + ⋯ |
L(s) = 1 | + (0.425 + 0.737i)2-s + (−0.890 − 0.455i)3-s + (0.137 − 0.238i)4-s + (0.846 + 1.46i)5-s + (−0.0433 − 0.850i)6-s + 0.113·7-s + 1.08·8-s + (0.585 + 0.810i)9-s + (−0.720 + 1.24i)10-s + (−0.193 − 0.335i)11-s + (−0.230 + 0.149i)12-s + (−0.918 − 0.394i)13-s + (0.0483 + 0.0837i)14-s + (−0.0861 − 1.68i)15-s + (0.324 + 0.562i)16-s + (−0.639 − 1.10i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.679 - 0.733i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.679 - 0.733i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.09688 + 0.479463i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.09688 + 0.479463i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.54 + 0.788i)T \) |
| 13 | \( 1 + (3.31 + 1.42i)T \) |
good | 2 | \( 1 + (-0.602 - 1.04i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.89 - 3.27i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 - 0.300T + 7T^{2} \) |
| 11 | \( 1 + (0.642 + 1.11i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2.63 + 4.56i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.829 + 1.43i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 3.34T + 23T^{2} \) |
| 29 | \( 1 + (-4.81 - 8.34i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3.29 + 5.71i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.97 + 3.42i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 2.86T + 41T^{2} \) |
| 43 | \( 1 + 0.0208T + 43T^{2} \) |
| 47 | \( 1 + (-0.954 + 1.65i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 7.15T + 53T^{2} \) |
| 59 | \( 1 + (4.36 - 7.56i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 - 5.13T + 61T^{2} \) |
| 67 | \( 1 - 8.31T + 67T^{2} \) |
| 71 | \( 1 + (-4.64 - 8.03i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 4.69T + 73T^{2} \) |
| 79 | \( 1 + (-6.65 + 11.5i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (6.45 - 11.1i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-3.19 + 5.54i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 3.76T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.92018510801060379968052741099, −12.91411974129902714982462974219, −11.36970532903384492988146875599, −10.69363334835718735991837114827, −9.818079445174680622180795458007, −7.52535346946499569560748206724, −6.82831642156906060147661831081, −5.97158360607860060507307379422, −4.97282338417640281912927747292, −2.36930153080129256176389279579,
1.84337873332427114977916967759, 4.25204181537777910375218626319, 4.98458042714141340039622862644, 6.35288860106198118873228556418, 8.127683429415816687552642823064, 9.544204175497295497816605956212, 10.33664635562639490140654795396, 11.55577485214670713905627475655, 12.51279110101184115222182364572, 12.82407002170517515528318786705