Properties

Label 2-117-117.49-c1-0-2
Degree 22
Conductor 117117
Sign 0.5400.841i0.540 - 0.841i
Analytic cond. 0.9342490.934249
Root an. cond. 0.9665650.966565
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.67 + 0.967i)2-s + (−1.73 − 0.0524i)3-s + (0.871 + 1.50i)4-s + (2.26 + 1.30i)5-s + (−2.84 − 1.76i)6-s + 2.32i·7-s − 0.497i·8-s + (2.99 + 0.181i)9-s + (2.53 + 4.38i)10-s + (−4.66 − 2.69i)11-s + (−1.42 − 2.65i)12-s + (−1.31 − 3.35i)13-s + (−2.25 + 3.90i)14-s + (−3.85 − 2.38i)15-s + (2.22 − 3.85i)16-s + (0.835 − 1.44i)17-s + ⋯
L(s)  = 1  + (1.18 + 0.683i)2-s + (−0.999 − 0.0302i)3-s + (0.435 + 0.754i)4-s + (1.01 + 0.585i)5-s + (−1.16 − 0.719i)6-s + 0.880i·7-s − 0.175i·8-s + (0.998 + 0.0605i)9-s + (0.800 + 1.38i)10-s + (−1.40 − 0.812i)11-s + (−0.412 − 0.767i)12-s + (−0.366 − 0.930i)13-s + (−0.602 + 1.04i)14-s + (−0.995 − 0.615i)15-s + (0.556 − 0.963i)16-s + (0.202 − 0.351i)17-s + ⋯

Functional equation

Λ(s)=(117s/2ΓC(s)L(s)=((0.5400.841i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.540 - 0.841i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(117s/2ΓC(s+1/2)L(s)=((0.5400.841i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.540 - 0.841i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 117117    =    32133^{2} \cdot 13
Sign: 0.5400.841i0.540 - 0.841i
Analytic conductor: 0.9342490.934249
Root analytic conductor: 0.9665650.966565
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ117(49,)\chi_{117} (49, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 117, ( :1/2), 0.5400.841i)(2,\ 117,\ (\ :1/2),\ 0.540 - 0.841i)

Particular Values

L(1)L(1) \approx 1.32653+0.724240i1.32653 + 0.724240i
L(12)L(\frac12) \approx 1.32653+0.724240i1.32653 + 0.724240i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(1.73+0.0524i)T 1 + (1.73 + 0.0524i)T
13 1+(1.31+3.35i)T 1 + (1.31 + 3.35i)T
good2 1+(1.670.967i)T+(1+1.73i)T2 1 + (-1.67 - 0.967i)T + (1 + 1.73i)T^{2}
5 1+(2.261.30i)T+(2.5+4.33i)T2 1 + (-2.26 - 1.30i)T + (2.5 + 4.33i)T^{2}
7 12.32iT7T2 1 - 2.32iT - 7T^{2}
11 1+(4.66+2.69i)T+(5.5+9.52i)T2 1 + (4.66 + 2.69i)T + (5.5 + 9.52i)T^{2}
17 1+(0.835+1.44i)T+(8.514.7i)T2 1 + (-0.835 + 1.44i)T + (-8.5 - 14.7i)T^{2}
19 1+(1.901.09i)T+(9.5+16.4i)T2 1 + (-1.90 - 1.09i)T + (9.5 + 16.4i)T^{2}
23 1+4.20T+23T2 1 + 4.20T + 23T^{2}
29 1+(2.864.95i)T+(14.525.1i)T2 1 + (2.86 - 4.95i)T + (-14.5 - 25.1i)T^{2}
31 1+(7.554.35i)T+(15.5+26.8i)T2 1 + (-7.55 - 4.35i)T + (15.5 + 26.8i)T^{2}
37 1+(1.220.707i)T+(18.532.0i)T2 1 + (1.22 - 0.707i)T + (18.5 - 32.0i)T^{2}
41 11.52iT41T2 1 - 1.52iT - 41T^{2}
43 11.87T+43T2 1 - 1.87T + 43T^{2}
47 1+(4.472.58i)T+(23.540.7i)T2 1 + (4.47 - 2.58i)T + (23.5 - 40.7i)T^{2}
53 1+9.81T+53T2 1 + 9.81T + 53T^{2}
59 1+(6.59+3.80i)T+(29.551.0i)T2 1 + (-6.59 + 3.80i)T + (29.5 - 51.0i)T^{2}
61 1+0.934T+61T2 1 + 0.934T + 61T^{2}
67 12.06iT67T2 1 - 2.06iT - 67T^{2}
71 1+(10.9+6.33i)T+(35.5+61.4i)T2 1 + (10.9 + 6.33i)T + (35.5 + 61.4i)T^{2}
73 112.6iT73T2 1 - 12.6iT - 73T^{2}
79 1+(3.466.00i)T+(39.5+68.4i)T2 1 + (-3.46 - 6.00i)T + (-39.5 + 68.4i)T^{2}
83 1+(7.95+4.59i)T+(41.571.8i)T2 1 + (-7.95 + 4.59i)T + (41.5 - 71.8i)T^{2}
89 1+(8.62+4.97i)T+(44.577.0i)T2 1 + (-8.62 + 4.97i)T + (44.5 - 77.0i)T^{2}
97 12.35iT97T2 1 - 2.35iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.65111305469742957289923205089, −12.87723232804858255165669552295, −11.99896632143911474525815798617, −10.59690611472968018797929807808, −9.838742422422758899305743672476, −7.82770182546127502434865868231, −6.45373917833328885835314751871, −5.62889259985791955616401498338, −5.13303023783236174181216528882, −2.93383560022990523218683437339, 2.01543149161924208781164402229, 4.27608720021242016642176760662, 5.07800700022999542993751229556, 6.10915612479576197141167751801, 7.64686198680437349400644367036, 9.754567278707335321998339446735, 10.40669720665300417183274236502, 11.57010553904228217936695315096, 12.46508478279473700112932819792, 13.31822568946150212657307382224

Graph of the ZZ-function along the critical line