L(s) = 1 | + (−0.662 + 0.662i)2-s + (1.56 + 0.749i)3-s + 1.12i·4-s + (0.101 + 0.0271i)5-s + (−1.53 + 0.538i)6-s + (−0.353 − 0.0946i)7-s + (−2.06 − 2.06i)8-s + (1.87 + 2.34i)9-s + (−0.0852 + 0.0492i)10-s + (−2.25 − 2.25i)11-s + (−0.840 + 1.75i)12-s + (3.51 + 0.821i)13-s + (0.296 − 0.171i)14-s + (0.137 + 0.118i)15-s + 0.499·16-s + (−0.713 + 1.23i)17-s + ⋯ |
L(s) = 1 | + (−0.468 + 0.468i)2-s + (0.901 + 0.432i)3-s + 0.560i·4-s + (0.0453 + 0.0121i)5-s + (−0.625 + 0.219i)6-s + (−0.133 − 0.0357i)7-s + (−0.731 − 0.731i)8-s + (0.625 + 0.780i)9-s + (−0.0269 + 0.0155i)10-s + (−0.678 − 0.678i)11-s + (−0.242 + 0.505i)12-s + (0.973 + 0.227i)13-s + (0.0793 − 0.0457i)14-s + (0.0356 + 0.0305i)15-s + 0.124·16-s + (−0.173 + 0.299i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.211 - 0.977i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.211 - 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.823874 + 0.664515i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.823874 + 0.664515i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.56 - 0.749i)T \) |
| 13 | \( 1 + (-3.51 - 0.821i)T \) |
good | 2 | \( 1 + (0.662 - 0.662i)T - 2iT^{2} \) |
| 5 | \( 1 + (-0.101 - 0.0271i)T + (4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (0.353 + 0.0946i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (2.25 + 2.25i)T + 11iT^{2} \) |
| 17 | \( 1 + (0.713 - 1.23i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.92 + 0.784i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.83 + 3.18i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 5.17iT - 29T^{2} \) |
| 31 | \( 1 + (-1.46 + 5.46i)T + (-26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (4.32 + 1.15i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-1.76 - 6.57i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-1.94 + 1.12i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (4.42 - 1.18i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 - 13.0iT - 53T^{2} \) |
| 59 | \( 1 + (-2.44 - 2.44i)T + 59iT^{2} \) |
| 61 | \( 1 + (-3.12 - 5.41i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (14.8 - 3.96i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (-1.56 - 5.85i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (4.13 - 4.13i)T - 73iT^{2} \) |
| 79 | \( 1 + (-8.15 + 14.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (4.29 + 16.0i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + (-0.630 + 2.35i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (3.20 - 11.9i)T + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.62152925644921572891489284725, −13.12676230543906852521079970989, −11.62594151259679683072796938259, −10.34439429619991252067530937575, −9.221276917480413222463925729587, −8.369392802894357188810535220983, −7.59761945380543508043011898062, −6.12836780333993601457143143850, −4.15410005798290875439273172011, −2.89620233950953708193145692603,
1.65969914695201600667361128299, 3.24684859712359366844805849018, 5.32212392633173717968976939844, 6.84152733280874629132171007021, 8.119376900506964599941216339085, 9.176841166479062838011642880004, 9.976871801077293650207050038251, 11.08151574964284560613213791209, 12.31339220339387087354468075913, 13.39369475988908458893325690301