L(s) = 1 | + (−0.662 + 0.662i)2-s + (1.56 + 0.749i)3-s + 1.12i·4-s + (0.101 + 0.0271i)5-s + (−1.53 + 0.538i)6-s + (−0.353 − 0.0946i)7-s + (−2.06 − 2.06i)8-s + (1.87 + 2.34i)9-s + (−0.0852 + 0.0492i)10-s + (−2.25 − 2.25i)11-s + (−0.840 + 1.75i)12-s + (3.51 + 0.821i)13-s + (0.296 − 0.171i)14-s + (0.137 + 0.118i)15-s + 0.499·16-s + (−0.713 + 1.23i)17-s + ⋯ |
L(s) = 1 | + (−0.468 + 0.468i)2-s + (0.901 + 0.432i)3-s + 0.560i·4-s + (0.0453 + 0.0121i)5-s + (−0.625 + 0.219i)6-s + (−0.133 − 0.0357i)7-s + (−0.731 − 0.731i)8-s + (0.625 + 0.780i)9-s + (−0.0269 + 0.0155i)10-s + (−0.678 − 0.678i)11-s + (−0.242 + 0.505i)12-s + (0.973 + 0.227i)13-s + (0.0793 − 0.0457i)14-s + (0.0356 + 0.0305i)15-s + 0.124·16-s + (−0.173 + 0.299i)17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.211−0.977i)Λ(2−s)
Λ(s)=(=(117s/2ΓC(s+1/2)L(s)(0.211−0.977i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.211−0.977i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1/2), 0.211−0.977i)
|
Particular Values
L(1) |
≈ |
0.823874+0.664515i |
L(21) |
≈ |
0.823874+0.664515i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.56−0.749i)T |
| 13 | 1+(−3.51−0.821i)T |
good | 2 | 1+(0.662−0.662i)T−2iT2 |
| 5 | 1+(−0.101−0.0271i)T+(4.33+2.5i)T2 |
| 7 | 1+(0.353+0.0946i)T+(6.06+3.5i)T2 |
| 11 | 1+(2.25+2.25i)T+11iT2 |
| 17 | 1+(0.713−1.23i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−2.92+0.784i)T+(16.4−9.5i)T2 |
| 23 | 1+(−1.83+3.18i)T+(−11.5−19.9i)T2 |
| 29 | 1+5.17iT−29T2 |
| 31 | 1+(−1.46+5.46i)T+(−26.8−15.5i)T2 |
| 37 | 1+(4.32+1.15i)T+(32.0+18.5i)T2 |
| 41 | 1+(−1.76−6.57i)T+(−35.5+20.5i)T2 |
| 43 | 1+(−1.94+1.12i)T+(21.5−37.2i)T2 |
| 47 | 1+(4.42−1.18i)T+(40.7−23.5i)T2 |
| 53 | 1−13.0iT−53T2 |
| 59 | 1+(−2.44−2.44i)T+59iT2 |
| 61 | 1+(−3.12−5.41i)T+(−30.5+52.8i)T2 |
| 67 | 1+(14.8−3.96i)T+(58.0−33.5i)T2 |
| 71 | 1+(−1.56−5.85i)T+(−61.4+35.5i)T2 |
| 73 | 1+(4.13−4.13i)T−73iT2 |
| 79 | 1+(−8.15+14.1i)T+(−39.5−68.4i)T2 |
| 83 | 1+(4.29+16.0i)T+(−71.8+41.5i)T2 |
| 89 | 1+(−0.630+2.35i)T+(−77.0−44.5i)T2 |
| 97 | 1+(3.20−11.9i)T+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.62152925644921572891489284725, −13.12676230543906852521079970989, −11.62594151259679683072796938259, −10.34439429619991252067530937575, −9.221276917480413222463925729587, −8.369392802894357188810535220983, −7.59761945380543508043011898062, −6.12836780333993601457143143850, −4.15410005798290875439273172011, −2.89620233950953708193145692603,
1.65969914695201600667361128299, 3.24684859712359366844805849018, 5.32212392633173717968976939844, 6.84152733280874629132171007021, 8.119376900506964599941216339085, 9.176841166479062838011642880004, 9.976871801077293650207050038251, 11.08151574964284560613213791209, 12.31339220339387087354468075913, 13.39369475988908458893325690301