L(s) = 1 | + (0.0604 + 0.0604i)2-s + (1.25 + 1.19i)3-s − 1.99i·4-s + (0.466 − 1.73i)5-s + (0.00379 + 0.148i)6-s + (0.132 − 0.495i)7-s + (0.241 − 0.241i)8-s + (0.153 + 2.99i)9-s + (0.133 − 0.0770i)10-s + (−4.05 + 4.05i)11-s + (2.37 − 2.50i)12-s + (3.18 + 1.69i)13-s + (0.0379 − 0.0219i)14-s + (2.66 − 1.62i)15-s − 3.95·16-s + (−2.73 + 4.74i)17-s + ⋯ |
L(s) = 1 | + (0.0427 + 0.0427i)2-s + (0.724 + 0.688i)3-s − 0.996i·4-s + (0.208 − 0.777i)5-s + (0.00154 + 0.0604i)6-s + (0.0501 − 0.187i)7-s + (0.0853 − 0.0853i)8-s + (0.0512 + 0.998i)9-s + (0.0421 − 0.0243i)10-s + (−1.22 + 1.22i)11-s + (0.686 − 0.722i)12-s + (0.882 + 0.470i)13-s + (0.0101 − 0.00585i)14-s + (0.686 − 0.420i)15-s − 0.989·16-s + (−0.663 + 1.14i)17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.993+0.115i)Λ(2−s)
Λ(s)=(=(117s/2ΓC(s+1/2)L(s)(0.993+0.115i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.993+0.115i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(2,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1/2), 0.993+0.115i)
|
Particular Values
L(1) |
≈ |
1.28960−0.0747368i |
L(21) |
≈ |
1.28960−0.0747368i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.25−1.19i)T |
| 13 | 1+(−3.18−1.69i)T |
good | 2 | 1+(−0.0604−0.0604i)T+2iT2 |
| 5 | 1+(−0.466+1.73i)T+(−4.33−2.5i)T2 |
| 7 | 1+(−0.132+0.495i)T+(−6.06−3.5i)T2 |
| 11 | 1+(4.05−4.05i)T−11iT2 |
| 17 | 1+(2.73−4.74i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.92+7.17i)T+(−16.4+9.5i)T2 |
| 23 | 1+(−2.21+3.84i)T+(−11.5−19.9i)T2 |
| 29 | 1−0.515iT−29T2 |
| 31 | 1+(3.18+0.854i)T+(26.8+15.5i)T2 |
| 37 | 1+(0.815−3.04i)T+(−32.0−18.5i)T2 |
| 41 | 1+(2.70−0.724i)T+(35.5−20.5i)T2 |
| 43 | 1+(−1.81+1.04i)T+(21.5−37.2i)T2 |
| 47 | 1+(1.08+4.06i)T+(−40.7+23.5i)T2 |
| 53 | 1+8.79iT−53T2 |
| 59 | 1+(−5.47+5.47i)T−59iT2 |
| 61 | 1+(−2.89−5.02i)T+(−30.5+52.8i)T2 |
| 67 | 1+(1.38+5.17i)T+(−58.0+33.5i)T2 |
| 71 | 1+(−2.49+0.668i)T+(61.4−35.5i)T2 |
| 73 | 1+(4.21+4.21i)T+73iT2 |
| 79 | 1+(2.43−4.20i)T+(−39.5−68.4i)T2 |
| 83 | 1+(3.28−0.879i)T+(71.8−41.5i)T2 |
| 89 | 1+(−10.8−2.90i)T+(77.0+44.5i)T2 |
| 97 | 1+(−2.14−0.574i)T+(84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.39120812628868957771335246093, −13.00605123175846028858253890613, −10.98866557914320609776026790026, −10.36020197090063147477401554081, −9.236780196040483611209310789985, −8.498921561274459105588187683989, −6.84980320214240669311619255810, −5.16338534485585707097521360686, −4.41821767479356707826956675585, −2.11080751001140622447629088626,
2.62919217665138692461628391823, 3.52803974338421256512944670451, 5.87108081812158696272809983341, 7.20037719372858229362852700951, 8.107332619060199467474166594799, 8.916871559548734712861606458126, 10.57813897171626993627166757871, 11.57786925217473549341072003176, 12.80209404108918199020333320671, 13.48439079997079097828885918029