L(s) = 1 | + (−1.53 − 1.53i)2-s + (1.40 + 1.00i)3-s + 2.71i·4-s + (−0.529 + 0.142i)5-s + (−0.619 − 3.71i)6-s + (4.13 − 1.10i)7-s + (1.10 − 1.10i)8-s + (0.974 + 2.83i)9-s + (1.03 + 0.595i)10-s + (2.64 − 2.64i)11-s + (−2.73 + 3.83i)12-s + (−3.49 − 0.872i)13-s + (−8.06 − 4.65i)14-s + (−0.889 − 0.333i)15-s + 2.04·16-s + (−0.784 − 1.35i)17-s + ⋯ |
L(s) = 1 | + (−1.08 − 1.08i)2-s + (0.813 + 0.581i)3-s + 1.35i·4-s + (−0.237 + 0.0635i)5-s + (−0.252 − 1.51i)6-s + (1.56 − 0.419i)7-s + (0.389 − 0.389i)8-s + (0.324 + 0.945i)9-s + (0.326 + 0.188i)10-s + (0.798 − 0.798i)11-s + (−0.789 + 1.10i)12-s + (−0.970 − 0.242i)13-s + (−2.15 − 1.24i)14-s + (−0.229 − 0.0860i)15-s + 0.512·16-s + (−0.190 − 0.329i)17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.678+0.734i)Λ(2−s)
Λ(s)=(=(117s/2ΓC(s+1/2)L(s)(0.678+0.734i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.678+0.734i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(32,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1/2), 0.678+0.734i)
|
Particular Values
L(1) |
≈ |
0.778215−0.340557i |
L(21) |
≈ |
0.778215−0.340557i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.40−1.00i)T |
| 13 | 1+(3.49+0.872i)T |
good | 2 | 1+(1.53+1.53i)T+2iT2 |
| 5 | 1+(0.529−0.142i)T+(4.33−2.5i)T2 |
| 7 | 1+(−4.13+1.10i)T+(6.06−3.5i)T2 |
| 11 | 1+(−2.64+2.64i)T−11iT2 |
| 17 | 1+(0.784+1.35i)T+(−8.5+14.7i)T2 |
| 19 | 1+(3.27+0.876i)T+(16.4+9.5i)T2 |
| 23 | 1+(−2.51−4.35i)T+(−11.5+19.9i)T2 |
| 29 | 1−1.18iT−29T2 |
| 31 | 1+(−0.395−1.47i)T+(−26.8+15.5i)T2 |
| 37 | 1+(−1.31+0.351i)T+(32.0−18.5i)T2 |
| 41 | 1+(1.37−5.13i)T+(−35.5−20.5i)T2 |
| 43 | 1+(8.94+5.16i)T+(21.5+37.2i)T2 |
| 47 | 1+(6.81+1.82i)T+(40.7+23.5i)T2 |
| 53 | 1+5.04iT−53T2 |
| 59 | 1+(7.65−7.65i)T−59iT2 |
| 61 | 1+(−2.96+5.13i)T+(−30.5−52.8i)T2 |
| 67 | 1+(3.07+0.824i)T+(58.0+33.5i)T2 |
| 71 | 1+(−0.774+2.89i)T+(−61.4−35.5i)T2 |
| 73 | 1+(9.10+9.10i)T+73iT2 |
| 79 | 1+(−7.18−12.4i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−3.67+13.7i)T+(−71.8−41.5i)T2 |
| 89 | 1+(−1.63−6.09i)T+(−77.0+44.5i)T2 |
| 97 | 1+(−0.846−3.15i)T+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.40944706664091697988380616754, −11.75230014235551762159817397363, −11.18781987771255746124929762071, −10.25498700735143321132836274844, −9.197426063021747055906968166717, −8.353327163484507768697842653989, −7.53248875165629719819827787184, −4.89035273629691310133586006798, −3.42408714322963958336424617801, −1.79837603557507823888219416011,
1.87150160434170496134822466049, 4.54340107145309828383569111305, 6.39490757455415737710794210149, 7.44041985590458411990296141876, 8.212488847181904696611719568399, 8.934848277101174049164032828983, 10.01558120162293991685267058810, 11.67986184832326708543839009034, 12.59282068695968014774818317414, 14.30381050014522807643305574415