L(s) = 1 | + (−0.754 + 0.754i)2-s + (0.861 + 1.50i)3-s + 0.862i·4-s + (0.595 + 2.22i)5-s + (−1.78 − 0.483i)6-s + (−1.34 − 5.00i)7-s + (−2.15 − 2.15i)8-s + (−1.51 + 2.58i)9-s + (−2.12 − 1.22i)10-s + (1.93 + 1.93i)11-s + (−1.29 + 0.743i)12-s + (3.42 + 1.13i)13-s + (4.78 + 2.76i)14-s + (−2.82 + 2.80i)15-s + 1.52·16-s + (0.0716 + 0.124i)17-s + ⋯ |
L(s) = 1 | + (−0.533 + 0.533i)2-s + (0.497 + 0.867i)3-s + 0.431i·4-s + (0.266 + 0.993i)5-s + (−0.727 − 0.197i)6-s + (−0.506 − 1.89i)7-s + (−0.763 − 0.763i)8-s + (−0.505 + 0.862i)9-s + (−0.671 − 0.387i)10-s + (0.583 + 0.583i)11-s + (−0.374 + 0.214i)12-s + (0.949 + 0.315i)13-s + (1.27 + 0.737i)14-s + (−0.729 + 0.725i)15-s + 0.382·16-s + (0.0173 + 0.0300i)17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(−0.386−0.922i)Λ(2−s)
Λ(s)=(=(117s/2ΓC(s+1/2)L(s)(−0.386−0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
−0.386−0.922i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1/2), −0.386−0.922i)
|
Particular Values
L(1) |
≈ |
0.512875+0.771147i |
L(21) |
≈ |
0.512875+0.771147i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.861−1.50i)T |
| 13 | 1+(−3.42−1.13i)T |
good | 2 | 1+(0.754−0.754i)T−2iT2 |
| 5 | 1+(−0.595−2.22i)T+(−4.33+2.5i)T2 |
| 7 | 1+(1.34+5.00i)T+(−6.06+3.5i)T2 |
| 11 | 1+(−1.93−1.93i)T+11iT2 |
| 17 | 1+(−0.0716−0.124i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−0.552+2.06i)T+(−16.4−9.5i)T2 |
| 23 | 1+(−0.421−0.730i)T+(−11.5+19.9i)T2 |
| 29 | 1+0.605iT−29T2 |
| 31 | 1+(−3.38+0.905i)T+(26.8−15.5i)T2 |
| 37 | 1+(−0.973−3.63i)T+(−32.0+18.5i)T2 |
| 41 | 1+(7.55+2.02i)T+(35.5+20.5i)T2 |
| 43 | 1+(−0.187−0.108i)T+(21.5+37.2i)T2 |
| 47 | 1+(−2.72+10.1i)T+(−40.7−23.5i)T2 |
| 53 | 1+8.00iT−53T2 |
| 59 | 1+(−5.26−5.26i)T+59iT2 |
| 61 | 1+(−0.675+1.16i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−1.98+7.40i)T+(−58.0−33.5i)T2 |
| 71 | 1+(7.04+1.88i)T+(61.4+35.5i)T2 |
| 73 | 1+(3.76−3.76i)T−73iT2 |
| 79 | 1+(−1.62−2.81i)T+(−39.5+68.4i)T2 |
| 83 | 1+(14.7+3.94i)T+(71.8+41.5i)T2 |
| 89 | 1+(14.2−3.81i)T+(77.0−44.5i)T2 |
| 97 | 1+(−0.525+0.140i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.91409582687206723862681798471, −13.28288100563700021712618338641, −11.43812964724415583611798484663, −10.34963493588358526722925164732, −9.743807966769283244867501096207, −8.495493695927505328107910845822, −7.22241714939206423589860825790, −6.59735196518691770750212428303, −4.16052885113244246093033501751, −3.29681143037659109953533805763,
1.40549995222116551758196513686, 2.88934398357885621253360214681, 5.59030180734161502606015864778, 6.21617063047995649081568043890, 8.521711729460237142311823728961, 8.774456793535409894435392715638, 9.659699739088766894812532768496, 11.38144360865399729646568312646, 12.20654539758846547435563157050, 12.94874294446718611082489415511