L(s) = 1 | + (0.311 − 0.311i)2-s + (1.53 + 0.809i)3-s + 1.80i·4-s + (−0.789 − 2.94i)5-s + (0.729 − 0.224i)6-s + (0.0751 + 0.280i)7-s + (1.18 + 1.18i)8-s + (1.68 + 2.47i)9-s + (−1.16 − 0.671i)10-s + (−1.04 − 1.04i)11-s + (−1.46 + 2.76i)12-s + (−3.58 − 0.362i)13-s + (0.110 + 0.0639i)14-s + (1.17 − 5.14i)15-s − 2.87·16-s + (0.767 + 1.32i)17-s + ⋯ |
L(s) = 1 | + (0.220 − 0.220i)2-s + (0.884 + 0.467i)3-s + 0.902i·4-s + (−0.352 − 1.31i)5-s + (0.297 − 0.0917i)6-s + (0.0284 + 0.106i)7-s + (0.419 + 0.419i)8-s + (0.563 + 0.826i)9-s + (−0.367 − 0.212i)10-s + (−0.316 − 0.316i)11-s + (−0.422 + 0.798i)12-s + (−0.994 − 0.100i)13-s + (0.0296 + 0.0170i)14-s + (0.303 − 1.32i)15-s − 0.718·16-s + (0.186 + 0.322i)17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.984−0.173i)Λ(2−s)
Λ(s)=(=(117s/2ΓC(s+1/2)L(s)(0.984−0.173i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.984−0.173i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1/2), 0.984−0.173i)
|
Particular Values
L(1) |
≈ |
1.38054+0.120541i |
L(21) |
≈ |
1.38054+0.120541i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.53−0.809i)T |
| 13 | 1+(3.58+0.362i)T |
good | 2 | 1+(−0.311+0.311i)T−2iT2 |
| 5 | 1+(0.789+2.94i)T+(−4.33+2.5i)T2 |
| 7 | 1+(−0.0751−0.280i)T+(−6.06+3.5i)T2 |
| 11 | 1+(1.04+1.04i)T+11iT2 |
| 17 | 1+(−0.767−1.32i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−0.989+3.69i)T+(−16.4−9.5i)T2 |
| 23 | 1+(3.92+6.79i)T+(−11.5+19.9i)T2 |
| 29 | 1−1.80iT−29T2 |
| 31 | 1+(3.94−1.05i)T+(26.8−15.5i)T2 |
| 37 | 1+(−2.40−8.97i)T+(−32.0+18.5i)T2 |
| 41 | 1+(2.37+0.636i)T+(35.5+20.5i)T2 |
| 43 | 1+(−8.95−5.16i)T+(21.5+37.2i)T2 |
| 47 | 1+(−2.30+8.58i)T+(−40.7−23.5i)T2 |
| 53 | 1−8.42iT−53T2 |
| 59 | 1+(−8.77−8.77i)T+59iT2 |
| 61 | 1+(−3.29+5.71i)T+(−30.5−52.8i)T2 |
| 67 | 1+(1.95−7.28i)T+(−58.0−33.5i)T2 |
| 71 | 1+(4.14+1.11i)T+(61.4+35.5i)T2 |
| 73 | 1+(−4.56+4.56i)T−73iT2 |
| 79 | 1+(2.96+5.13i)T+(−39.5+68.4i)T2 |
| 83 | 1+(11.4+3.07i)T+(71.8+41.5i)T2 |
| 89 | 1+(1.37−0.367i)T+(77.0−44.5i)T2 |
| 97 | 1+(−3.26+0.874i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.33675629931404492521413020628, −12.66696187895202277521345313235, −11.80932627410440907029727425533, −10.34065304502800930308860479322, −8.975878119276239338249095124219, −8.384837530354157857301099400165, −7.41929409445412038842931547570, −5.00784692986418132793111549501, −4.14556669020168338689504649882, −2.62167191824847110212356302328,
2.26772852025973535844186357646, 3.87118651219387596835552445318, 5.76088233996956687008911564942, 7.14323387763798027139412667816, 7.60704886589443642612733730083, 9.482086974319521463507012763948, 10.18971644698547945049570712524, 11.39291991324261792104977460819, 12.66171930373513034237706036805, 14.03414228539307212385823320099