L(s) = 1 | + (0.407 − 1.51i)2-s + (1.33 + 1.10i)3-s + (−0.412 − 0.237i)4-s + (−1.74 + 0.466i)5-s + (2.21 − 1.58i)6-s + (0.556 − 2.07i)7-s + (1.69 − 1.69i)8-s + (0.575 + 2.94i)9-s + 2.83i·10-s + (−2.79 − 0.748i)11-s + (−0.289 − 0.771i)12-s + (0.478 + 3.57i)13-s + (−2.93 − 1.69i)14-s + (−2.84 − 1.29i)15-s + (−2.36 − 4.09i)16-s − 6.33·17-s + ⋯ |
L(s) = 1 | + (0.287 − 1.07i)2-s + (0.771 + 0.635i)3-s + (−0.206 − 0.118i)4-s + (−0.778 + 0.208i)5-s + (0.905 − 0.646i)6-s + (0.210 − 0.785i)7-s + (0.599 − 0.599i)8-s + (0.191 + 0.981i)9-s + 0.896i·10-s + (−0.842 − 0.225i)11-s + (−0.0834 − 0.222i)12-s + (0.132 + 0.991i)13-s + (−0.783 − 0.452i)14-s + (−0.733 − 0.333i)15-s + (−0.590 − 1.02i)16-s − 1.53·17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.713+0.700i)Λ(2−s)
Λ(s)=(=(117s/2ΓC(s+1/2)L(s)(0.713+0.700i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.713+0.700i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1/2), 0.713+0.700i)
|
Particular Values
L(1) |
≈ |
1.30742−0.534441i |
L(21) |
≈ |
1.30742−0.534441i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.33−1.10i)T |
| 13 | 1+(−0.478−3.57i)T |
good | 2 | 1+(−0.407+1.51i)T+(−1.73−i)T2 |
| 5 | 1+(1.74−0.466i)T+(4.33−2.5i)T2 |
| 7 | 1+(−0.556+2.07i)T+(−6.06−3.5i)T2 |
| 11 | 1+(2.79+0.748i)T+(9.52+5.5i)T2 |
| 17 | 1+6.33T+17T2 |
| 19 | 1+(−0.0431+0.0431i)T−19iT2 |
| 23 | 1+(1.17−2.02i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−8.31+4.80i)T+(14.5−25.1i)T2 |
| 31 | 1+(−0.602−2.24i)T+(−26.8+15.5i)T2 |
| 37 | 1+(3.87+3.87i)T+37iT2 |
| 41 | 1+(−2.06+0.554i)T+(35.5−20.5i)T2 |
| 43 | 1+(−7.40+4.27i)T+(21.5−37.2i)T2 |
| 47 | 1+(−4.53−1.21i)T+(40.7+23.5i)T2 |
| 53 | 1−3.15iT−53T2 |
| 59 | 1+(0.734+2.74i)T+(−51.0+29.5i)T2 |
| 61 | 1+(4.45+7.71i)T+(−30.5+52.8i)T2 |
| 67 | 1+(3.23+12.0i)T+(−58.0+33.5i)T2 |
| 71 | 1+(−6.13−6.13i)T+71iT2 |
| 73 | 1+(−0.333−0.333i)T+73iT2 |
| 79 | 1+(−6.64−11.5i)T+(−39.5+68.4i)T2 |
| 83 | 1+(1.46−5.45i)T+(−71.8−41.5i)T2 |
| 89 | 1+(4.52−4.52i)T−89iT2 |
| 97 | 1+(13.7+3.67i)T+(84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.60119323382196631620073561049, −12.24792527896517126361533063146, −11.03858870435070693989393185587, −10.69339395829467675304170555033, −9.413933662321959415649752351178, −8.075287219526762026085932819966, −7.05998201893677852076029425552, −4.52134247818335848875267024127, −3.81354764567519320577697332492, −2.38308041231881869072133355006,
2.53669219358594337073738208133, 4.57899159473941756463408613194, 5.99151765062679406972821408264, 7.18345886548515813700559696308, 8.134486229160459867053814555422, 8.705978717258750164544339416611, 10.56062851032966036241755761176, 11.90497766816820817117084221697, 12.89013277243776852243986254054, 13.80216895876508590501288572582