L(s) = 1 | + (−0.999 + 0.267i)2-s + (−1.73 + 0.0358i)3-s + (−0.805 + 0.465i)4-s + (0.483 − 1.80i)5-s + (1.72 − 0.499i)6-s + (3.99 − 1.07i)7-s + (2.14 − 2.14i)8-s + (2.99 − 0.124i)9-s + 1.93i·10-s + (−0.995 − 3.71i)11-s + (1.37 − 0.834i)12-s + (−2.74 + 2.34i)13-s + (−3.70 + 2.13i)14-s + (−0.772 + 3.14i)15-s + (−0.636 + 1.10i)16-s − 0.582·17-s + ⋯ |
L(s) = 1 | + (−0.706 + 0.189i)2-s + (−0.999 + 0.0206i)3-s + (−0.402 + 0.232i)4-s + (0.216 − 0.806i)5-s + (0.702 − 0.203i)6-s + (1.51 − 0.404i)7-s + (0.757 − 0.757i)8-s + (0.999 − 0.0413i)9-s + 0.610i·10-s + (−0.300 − 1.12i)11-s + (0.397 − 0.240i)12-s + (−0.760 + 0.649i)13-s + (−0.990 + 0.571i)14-s + (−0.199 + 0.810i)15-s + (−0.159 + 0.275i)16-s − 0.141·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.762 + 0.646i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.762 + 0.646i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.528918 - 0.194040i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.528918 - 0.194040i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.73 - 0.0358i)T \) |
| 13 | \( 1 + (2.74 - 2.34i)T \) |
good | 2 | \( 1 + (0.999 - 0.267i)T + (1.73 - i)T^{2} \) |
| 5 | \( 1 + (-0.483 + 1.80i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (-3.99 + 1.07i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (0.995 + 3.71i)T + (-9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + 0.582T + 17T^{2} \) |
| 19 | \( 1 + (-4.41 + 4.41i)T - 19iT^{2} \) |
| 23 | \( 1 + (2.65 + 4.59i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-5.19 - 2.99i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.14 - 0.574i)T + (26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (4.32 + 4.32i)T + 37iT^{2} \) |
| 41 | \( 1 + (1.64 - 6.13i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (5.20 + 3.00i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.64 - 6.15i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 - 1.69iT - 53T^{2} \) |
| 59 | \( 1 + (-6.45 - 1.72i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (1.12 - 1.95i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.21 + 0.594i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (1.87 + 1.87i)T + 71iT^{2} \) |
| 73 | \( 1 + (-5.42 - 5.42i)T + 73iT^{2} \) |
| 79 | \( 1 + (1.10 - 1.91i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (11.0 - 2.95i)T + (71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (0.110 - 0.110i)T - 89iT^{2} \) |
| 97 | \( 1 + (-2.91 - 10.8i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.39623203088095927854221194753, −12.23207122724305890939816612742, −11.26702168548702435512682195439, −10.29186001307263671663492586746, −9.030877673593137118347038839978, −8.127953177035622772053393454698, −6.98946390628369568458231613005, −5.15611134518996228982837190762, −4.52309152563571893428071425357, −1.01644226386091684264134987962,
1.81866309116641564446070128451, 4.73399641485754030290635031191, 5.51765095770429577542983445021, 7.27397957618144287980638175779, 8.166349017335637991936781490414, 9.952280471567240716682528293655, 10.26460056443369381401910932966, 11.45905833322914168981876075054, 12.20641199345490123406904442383, 13.76820543998169707102905968192