L(s) = 1 | + (−0.999 + 0.267i)2-s + (−1.73 + 0.0358i)3-s + (−0.805 + 0.465i)4-s + (0.483 − 1.80i)5-s + (1.72 − 0.499i)6-s + (3.99 − 1.07i)7-s + (2.14 − 2.14i)8-s + (2.99 − 0.124i)9-s + 1.93i·10-s + (−0.995 − 3.71i)11-s + (1.37 − 0.834i)12-s + (−2.74 + 2.34i)13-s + (−3.70 + 2.13i)14-s + (−0.772 + 3.14i)15-s + (−0.636 + 1.10i)16-s − 0.582·17-s + ⋯ |
L(s) = 1 | + (−0.706 + 0.189i)2-s + (−0.999 + 0.0206i)3-s + (−0.402 + 0.232i)4-s + (0.216 − 0.806i)5-s + (0.702 − 0.203i)6-s + (1.51 − 0.404i)7-s + (0.757 − 0.757i)8-s + (0.999 − 0.0413i)9-s + 0.610i·10-s + (−0.300 − 1.12i)11-s + (0.397 − 0.240i)12-s + (−0.760 + 0.649i)13-s + (−0.990 + 0.571i)14-s + (−0.199 + 0.810i)15-s + (−0.159 + 0.275i)16-s − 0.141·17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.762+0.646i)Λ(2−s)
Λ(s)=(=(117s/2ΓC(s+1/2)L(s)(0.762+0.646i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.762+0.646i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(83,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1/2), 0.762+0.646i)
|
Particular Values
L(1) |
≈ |
0.528918−0.194040i |
L(21) |
≈ |
0.528918−0.194040i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.73−0.0358i)T |
| 13 | 1+(2.74−2.34i)T |
good | 2 | 1+(0.999−0.267i)T+(1.73−i)T2 |
| 5 | 1+(−0.483+1.80i)T+(−4.33−2.5i)T2 |
| 7 | 1+(−3.99+1.07i)T+(6.06−3.5i)T2 |
| 11 | 1+(0.995+3.71i)T+(−9.52+5.5i)T2 |
| 17 | 1+0.582T+17T2 |
| 19 | 1+(−4.41+4.41i)T−19iT2 |
| 23 | 1+(2.65+4.59i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−5.19−2.99i)T+(14.5+25.1i)T2 |
| 31 | 1+(−2.14−0.574i)T+(26.8+15.5i)T2 |
| 37 | 1+(4.32+4.32i)T+37iT2 |
| 41 | 1+(1.64−6.13i)T+(−35.5−20.5i)T2 |
| 43 | 1+(5.20+3.00i)T+(21.5+37.2i)T2 |
| 47 | 1+(−1.64−6.15i)T+(−40.7+23.5i)T2 |
| 53 | 1−1.69iT−53T2 |
| 59 | 1+(−6.45−1.72i)T+(51.0+29.5i)T2 |
| 61 | 1+(1.12−1.95i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.21+0.594i)T+(58.0+33.5i)T2 |
| 71 | 1+(1.87+1.87i)T+71iT2 |
| 73 | 1+(−5.42−5.42i)T+73iT2 |
| 79 | 1+(1.10−1.91i)T+(−39.5−68.4i)T2 |
| 83 | 1+(11.0−2.95i)T+(71.8−41.5i)T2 |
| 89 | 1+(0.110−0.110i)T−89iT2 |
| 97 | 1+(−2.91−10.8i)T+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.39623203088095927854221194753, −12.23207122724305890939816612742, −11.26702168548702435512682195439, −10.29186001307263671663492586746, −9.030877673593137118347038839978, −8.127953177035622772053393454698, −6.98946390628369568458231613005, −5.15611134518996228982837190762, −4.52309152563571893428071425357, −1.01644226386091684264134987962,
1.81866309116641564446070128451, 4.73399641485754030290635031191, 5.51765095770429577542983445021, 7.27397957618144287980638175779, 8.166349017335637991936781490414, 9.952280471567240716682528293655, 10.26460056443369381401910932966, 11.45905833322914168981876075054, 12.20641199345490123406904442383, 13.76820543998169707102905968192