Properties

Label 2-117-117.86-c1-0-2
Degree $2$
Conductor $117$
Sign $0.922 + 0.385i$
Analytic cond. $0.934249$
Root an. cond. $0.966565$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.24 − 0.600i)2-s + (0.724 − 1.57i)3-s + (2.92 + 1.69i)4-s + (1.01 + 3.78i)5-s + (−2.56 + 3.09i)6-s + (2.27 + 0.608i)7-s + (−2.26 − 2.26i)8-s + (−1.95 − 2.27i)9-s − 9.08i·10-s + (0.637 − 2.38i)11-s + (4.78 − 3.38i)12-s + (1.99 + 3.00i)13-s + (−4.72 − 2.72i)14-s + (6.68 + 1.14i)15-s + (0.335 + 0.581i)16-s + 0.901·17-s + ⋯
L(s)  = 1  + (−1.58 − 0.424i)2-s + (0.418 − 0.908i)3-s + (1.46 + 0.845i)4-s + (0.453 + 1.69i)5-s + (−1.04 + 1.26i)6-s + (0.858 + 0.230i)7-s + (−0.801 − 0.801i)8-s + (−0.650 − 0.759i)9-s − 2.87i·10-s + (0.192 − 0.717i)11-s + (1.38 − 0.976i)12-s + (0.553 + 0.832i)13-s + (−1.26 − 0.729i)14-s + (1.72 + 0.295i)15-s + (0.0838 + 0.145i)16-s + 0.218·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.922 + 0.385i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.922 + 0.385i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(117\)    =    \(3^{2} \cdot 13\)
Sign: $0.922 + 0.385i$
Analytic conductor: \(0.934249\)
Root analytic conductor: \(0.966565\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{117} (86, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 117,\ (\ :1/2),\ 0.922 + 0.385i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.656818 - 0.131723i\)
\(L(\frac12)\) \(\approx\) \(0.656818 - 0.131723i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.724 + 1.57i)T \)
13 \( 1 + (-1.99 - 3.00i)T \)
good2 \( 1 + (2.24 + 0.600i)T + (1.73 + i)T^{2} \)
5 \( 1 + (-1.01 - 3.78i)T + (-4.33 + 2.5i)T^{2} \)
7 \( 1 + (-2.27 - 0.608i)T + (6.06 + 3.5i)T^{2} \)
11 \( 1 + (-0.637 + 2.38i)T + (-9.52 - 5.5i)T^{2} \)
17 \( 1 - 0.901T + 17T^{2} \)
19 \( 1 + (2.07 + 2.07i)T + 19iT^{2} \)
23 \( 1 + (-1.50 + 2.60i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-2.19 + 1.26i)T + (14.5 - 25.1i)T^{2} \)
31 \( 1 + (-1.92 + 0.516i)T + (26.8 - 15.5i)T^{2} \)
37 \( 1 + (7.88 - 7.88i)T - 37iT^{2} \)
41 \( 1 + (0.895 + 3.34i)T + (-35.5 + 20.5i)T^{2} \)
43 \( 1 + (-5.11 + 2.95i)T + (21.5 - 37.2i)T^{2} \)
47 \( 1 + (-0.259 + 0.966i)T + (-40.7 - 23.5i)T^{2} \)
53 \( 1 + 0.635iT - 53T^{2} \)
59 \( 1 + (5.54 - 1.48i)T + (51.0 - 29.5i)T^{2} \)
61 \( 1 + (4.38 + 7.58i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (8.84 - 2.37i)T + (58.0 - 33.5i)T^{2} \)
71 \( 1 + (7.93 - 7.93i)T - 71iT^{2} \)
73 \( 1 + (-9.16 + 9.16i)T - 73iT^{2} \)
79 \( 1 + (0.204 + 0.353i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (3.66 + 0.982i)T + (71.8 + 41.5i)T^{2} \)
89 \( 1 + (10.0 + 10.0i)T + 89iT^{2} \)
97 \( 1 + (0.733 - 2.73i)T + (-84.0 - 48.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.73023864220123120683254535369, −11.86556846579138698335888656222, −11.18966689120698934304052080258, −10.39647051415069651888665537103, −9.048305871941290891006053587852, −8.240945338428186487694289612719, −7.11260518813545481899740024845, −6.32849185226057388628628728474, −2.97951775036803070516497326471, −1.81165844178678455103924968030, 1.52509719836628135297247262926, 4.45964904925987665761220357103, 5.65054115754548528664990125883, 7.72700055771208149616292663263, 8.479533100890136051194788873705, 9.169177496443813941043255271024, 10.05001158092943499196948095233, 10.96529773834811789960097845640, 12.46950227425898288849391338489, 13.76522553668930932826193898755

Graph of the $Z$-function along the critical line