L(s) = 1 | + (−2.24 − 0.600i)2-s + (0.724 − 1.57i)3-s + (2.92 + 1.69i)4-s + (1.01 + 3.78i)5-s + (−2.56 + 3.09i)6-s + (2.27 + 0.608i)7-s + (−2.26 − 2.26i)8-s + (−1.95 − 2.27i)9-s − 9.08i·10-s + (0.637 − 2.38i)11-s + (4.78 − 3.38i)12-s + (1.99 + 3.00i)13-s + (−4.72 − 2.72i)14-s + (6.68 + 1.14i)15-s + (0.335 + 0.581i)16-s + 0.901·17-s + ⋯ |
L(s) = 1 | + (−1.58 − 0.424i)2-s + (0.418 − 0.908i)3-s + (1.46 + 0.845i)4-s + (0.453 + 1.69i)5-s + (−1.04 + 1.26i)6-s + (0.858 + 0.230i)7-s + (−0.801 − 0.801i)8-s + (−0.650 − 0.759i)9-s − 2.87i·10-s + (0.192 − 0.717i)11-s + (1.38 − 0.976i)12-s + (0.553 + 0.832i)13-s + (−1.26 − 0.729i)14-s + (1.72 + 0.295i)15-s + (0.0838 + 0.145i)16-s + 0.218·17-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.922+0.385i)Λ(2−s)
Λ(s)=(=(117s/2ΓC(s+1/2)L(s)(0.922+0.385i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.922+0.385i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(86,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1/2), 0.922+0.385i)
|
Particular Values
L(1) |
≈ |
0.656818−0.131723i |
L(21) |
≈ |
0.656818−0.131723i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.724+1.57i)T |
| 13 | 1+(−1.99−3.00i)T |
good | 2 | 1+(2.24+0.600i)T+(1.73+i)T2 |
| 5 | 1+(−1.01−3.78i)T+(−4.33+2.5i)T2 |
| 7 | 1+(−2.27−0.608i)T+(6.06+3.5i)T2 |
| 11 | 1+(−0.637+2.38i)T+(−9.52−5.5i)T2 |
| 17 | 1−0.901T+17T2 |
| 19 | 1+(2.07+2.07i)T+19iT2 |
| 23 | 1+(−1.50+2.60i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−2.19+1.26i)T+(14.5−25.1i)T2 |
| 31 | 1+(−1.92+0.516i)T+(26.8−15.5i)T2 |
| 37 | 1+(7.88−7.88i)T−37iT2 |
| 41 | 1+(0.895+3.34i)T+(−35.5+20.5i)T2 |
| 43 | 1+(−5.11+2.95i)T+(21.5−37.2i)T2 |
| 47 | 1+(−0.259+0.966i)T+(−40.7−23.5i)T2 |
| 53 | 1+0.635iT−53T2 |
| 59 | 1+(5.54−1.48i)T+(51.0−29.5i)T2 |
| 61 | 1+(4.38+7.58i)T+(−30.5+52.8i)T2 |
| 67 | 1+(8.84−2.37i)T+(58.0−33.5i)T2 |
| 71 | 1+(7.93−7.93i)T−71iT2 |
| 73 | 1+(−9.16+9.16i)T−73iT2 |
| 79 | 1+(0.204+0.353i)T+(−39.5+68.4i)T2 |
| 83 | 1+(3.66+0.982i)T+(71.8+41.5i)T2 |
| 89 | 1+(10.0+10.0i)T+89iT2 |
| 97 | 1+(0.733−2.73i)T+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.73023864220123120683254535369, −11.86556846579138698335888656222, −11.18966689120698934304052080258, −10.39647051415069651888665537103, −9.048305871941290891006053587852, −8.240945338428186487694289612719, −7.11260518813545481899740024845, −6.32849185226057388628628728474, −2.97951775036803070516497326471, −1.81165844178678455103924968030,
1.52509719836628135297247262926, 4.45964904925987665761220357103, 5.65054115754548528664990125883, 7.72700055771208149616292663263, 8.479533100890136051194788873705, 9.169177496443813941043255271024, 10.05001158092943499196948095233, 10.96529773834811789960097845640, 12.46950227425898288849391338489, 13.76522553668930932826193898755