L(s) = 1 | + (0.5 + 1.86i)2-s + (0.232 − 0.133i)4-s + (4.36 − 4.36i)5-s + (2.26 − 8.46i)7-s + (5.83 + 5.83i)8-s + (10.3 + 5.96i)10-s + (−6.19 + 1.66i)11-s + (−6.5 + 11.2i)13-s + 16.9·14-s + (−7.42 + 12.8i)16-s + (−9.99 + 5.76i)17-s + (3.36 + 0.901i)19-s + (0.428 − 1.59i)20-s + (−6.19 − 10.7i)22-s + (8.49 + 4.90i)23-s + ⋯ |
L(s) = 1 | + (0.250 + 0.933i)2-s + (0.0580 − 0.0334i)4-s + (0.873 − 0.873i)5-s + (0.323 − 1.20i)7-s + (0.728 + 0.728i)8-s + (1.03 + 0.596i)10-s + (−0.563 + 0.150i)11-s + (−0.5 + 0.866i)13-s + 1.20·14-s + (−0.464 + 0.804i)16-s + (−0.587 + 0.339i)17-s + (0.177 + 0.0474i)19-s + (0.0214 − 0.0799i)20-s + (−0.281 − 0.487i)22-s + (0.369 + 0.213i)23-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.884−0.466i)Λ(3−s)
Λ(s)=(=(117s/2ΓC(s+1)L(s)(0.884−0.466i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.884−0.466i
|
Analytic conductor: |
3.18801 |
Root analytic conductor: |
1.78550 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(19,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1), 0.884−0.466i)
|
Particular Values
L(23) |
≈ |
1.85976+0.460030i |
L(21) |
≈ |
1.85976+0.460030i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 13 | 1+(6.5−11.2i)T |
good | 2 | 1+(−0.5−1.86i)T+(−3.46+2i)T2 |
| 5 | 1+(−4.36+4.36i)T−25iT2 |
| 7 | 1+(−2.26+8.46i)T+(−42.4−24.5i)T2 |
| 11 | 1+(6.19−1.66i)T+(104.−60.5i)T2 |
| 17 | 1+(9.99−5.76i)T+(144.5−250.i)T2 |
| 19 | 1+(−3.36−0.901i)T+(312.+180.5i)T2 |
| 23 | 1+(−8.49−4.90i)T+(264.5+458.i)T2 |
| 29 | 1+(5.69−9.86i)T+(−420.5−728.i)T2 |
| 31 | 1+(−1.92+1.92i)T−961iT2 |
| 37 | 1+(42.1−11.2i)T+(1.18e3−684.5i)T2 |
| 41 | 1+(5.08+18.9i)T+(−1.45e3+840.5i)T2 |
| 43 | 1+(−45+25.9i)T+(924.5−1.60e3i)T2 |
| 47 | 1+(0.320+0.320i)T+2.20e3iT2 |
| 53 | 1+78.7T+2.80e3T2 |
| 59 | 1+(10.9−40.9i)T+(−3.01e3−1.74e3i)T2 |
| 61 | 1+(49.1+85.1i)T+(−1.86e3+3.22e3i)T2 |
| 67 | 1+(−19.9−74.5i)T+(−3.88e3+2.24e3i)T2 |
| 71 | 1+(−31.0−8.31i)T+(4.36e3+2.52e3i)T2 |
| 73 | 1+(−48.2−48.2i)T+5.32e3iT2 |
| 79 | 1+82.7T+6.24e3T2 |
| 83 | 1+(−69.5+69.5i)T−6.88e3iT2 |
| 89 | 1+(−31.8+8.52i)T+(6.85e3−3.96e3i)T2 |
| 97 | 1+(−74.8−20.0i)T+(8.14e3+4.70e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.72476091100425639821470994967, −12.70089485289403244922890464251, −11.16260297646614537620239813661, −10.20251408990483604436756016377, −8.953550418840949620956976552447, −7.64452218802888765454604993187, −6.73221072594809962542770938333, −5.39693521225276615329407324784, −4.48601167121298465673405389167, −1.73552494048310208940632732094,
2.21734899732098843030985143830, 2.98660309311086061713674839472, 5.09527189466375724664663282836, 6.36730020975169760639902085143, 7.73971469795538567032374172500, 9.288510324567637433568674341859, 10.36647045301870142295350018769, 11.08966088582312802240054914470, 12.15886424512459801082979511783, 13.00663185896081728591841814558