L(s) = 1 | + 0.238i·2-s + 3.94·4-s − 9.50i·5-s − 5.89·7-s + 1.89i·8-s + 2.26·10-s − 9.02i·11-s + 3.60·13-s − 1.40i·14-s + 15.3·16-s + 19.8i·17-s + 32.2·19-s − 37.4i·20-s + 2.15·22-s + 2.25i·23-s + ⋯ |
L(s) = 1 | + 0.119i·2-s + 0.985·4-s − 1.90i·5-s − 0.841·7-s + 0.236i·8-s + 0.226·10-s − 0.820i·11-s + 0.277·13-s − 0.100i·14-s + 0.957·16-s + 1.16i·17-s + 1.69·19-s − 1.87i·20-s + 0.0979·22-s + 0.0979i·23-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.577+0.816i)Λ(3−s)
Λ(s)=(=(117s/2ΓC(s+1)L(s)(0.577+0.816i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.577+0.816i
|
Analytic conductor: |
3.18801 |
Root analytic conductor: |
1.78550 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1), 0.577+0.816i)
|
Particular Values
L(23) |
≈ |
1.38544−0.717160i |
L(21) |
≈ |
1.38544−0.717160i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 13 | 1−3.60T |
good | 2 | 1−0.238iT−4T2 |
| 5 | 1+9.50iT−25T2 |
| 7 | 1+5.89T+49T2 |
| 11 | 1+9.02iT−121T2 |
| 17 | 1−19.8iT−289T2 |
| 19 | 1−32.2T+361T2 |
| 23 | 1−2.25iT−529T2 |
| 29 | 1−25.2iT−841T2 |
| 31 | 1−8.89T+961T2 |
| 37 | 1+38.8T+1.36e3T2 |
| 41 | 1−29.5iT−1.68e3T2 |
| 43 | 1−45.7T+1.84e3T2 |
| 47 | 1−51.1iT−2.20e3T2 |
| 53 | 1+47.1iT−2.80e3T2 |
| 59 | 1+33.5iT−3.48e3T2 |
| 61 | 1+10.4T+3.72e3T2 |
| 67 | 1−63.3T+4.48e3T2 |
| 71 | 1+92.4iT−5.04e3T2 |
| 73 | 1+57.1T+5.32e3T2 |
| 79 | 1+22.6T+6.24e3T2 |
| 83 | 1−108.iT−6.88e3T2 |
| 89 | 1−65.2iT−7.92e3T2 |
| 97 | 1+36.4T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.90023385097438979478076787096, −12.27924270596526933540493086876, −11.22599180745249722846961280159, −9.841043083665339362324136062802, −8.778553014256907857273566996704, −7.80329384800721536923613602227, −6.23303052282266849810451865403, −5.28595421453125009501401212438, −3.47904714578236888857879846136, −1.25861746030581259933347928955,
2.51536723491900765715101839783, 3.41984835846068180050624208098, 5.89623770846633214502606235923, 7.02805613860950361381779579016, 7.37772863586674204017816350766, 9.688292356225533676325210242785, 10.31550876049810390027514280728, 11.38838646361895986573295703718, 12.07385673838523335962015292042, 13.62830241114388327200715978027