L(s) = 1 | + 3.11·2-s + 5.69·4-s + 2.14·5-s + 1.36i·7-s + 5.26·8-s + 6.69·10-s + 0.221·11-s + (−7.69 − 10.4i)13-s + 4.24i·14-s − 6.38·16-s + 24.1i·17-s − 27.7i·19-s + 12.2·20-s + 0.690·22-s + 28.3i·23-s + ⋯ |
L(s) = 1 | + 1.55·2-s + 1.42·4-s + 0.429·5-s + 0.194i·7-s + 0.657·8-s + 0.669·10-s + 0.0201·11-s + (−0.591 − 0.806i)13-s + 0.303i·14-s − 0.398·16-s + 1.42i·17-s − 1.46i·19-s + 0.611·20-s + 0.0313·22-s + 1.23i·23-s + ⋯ |
Λ(s)=(=(117s/2ΓC(s)L(s)(0.999−0.0175i)Λ(3−s)
Λ(s)=(=(117s/2ΓC(s+1)L(s)(0.999−0.0175i)Λ(1−s)
Degree: |
2 |
Conductor: |
117
= 32⋅13
|
Sign: |
0.999−0.0175i
|
Analytic conductor: |
3.18801 |
Root analytic conductor: |
1.78550 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ117(116,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 117, ( :1), 0.999−0.0175i)
|
Particular Values
L(23) |
≈ |
2.98805+0.0261843i |
L(21) |
≈ |
2.98805+0.0261843i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 13 | 1+(7.69+10.4i)T |
good | 2 | 1−3.11T+4T2 |
| 5 | 1−2.14T+25T2 |
| 7 | 1−1.36iT−49T2 |
| 11 | 1−0.221T+121T2 |
| 17 | 1−24.1iT−289T2 |
| 19 | 1+27.7iT−361T2 |
| 23 | 1−28.3iT−529T2 |
| 29 | 1+27.0iT−841T2 |
| 31 | 1−18.6iT−961T2 |
| 37 | 1+20.0iT−1.36e3T2 |
| 41 | 1+14.6T+1.68e3T2 |
| 43 | 1−30.1T+1.84e3T2 |
| 47 | 1−78.7T+2.20e3T2 |
| 53 | 1−26.7iT−2.80e3T2 |
| 59 | 1−52.3T+3.48e3T2 |
| 61 | 1+11.2T+3.72e3T2 |
| 67 | 1+76.0iT−4.48e3T2 |
| 71 | 1+75.0T+5.04e3T2 |
| 73 | 1−122.iT−5.32e3T2 |
| 79 | 1−62.6T+6.24e3T2 |
| 83 | 1−94.9T+6.88e3T2 |
| 89 | 1−21.4T+7.92e3T2 |
| 97 | 1+133.iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.31877583908627315468010619950, −12.56523624105233828567446465600, −11.58666457941826692669616063875, −10.44145265362339689744019777533, −9.081841383559654982407255426569, −7.46598879426445458531261358213, −6.09753907390752052988824869088, −5.27871167316522094180107909537, −3.91255435858274359424700093379, −2.44814460435717312872983340000,
2.40645258341439104543050965701, 3.98391998312522841863972510343, 5.12256823743093219097407264140, 6.24847405864604929947245678453, 7.36547685809360030384950955445, 9.135039432155504654463147018735, 10.36241275898755473043373895081, 11.73363893406068270662478091773, 12.32661153554343913745469682390, 13.50106410878804419539122704473