L(s) = 1 | − 2.57i·2-s + (2.93 + 0.598i)3-s − 2.65·4-s + (−0.817 + 0.471i)5-s + (1.54 − 7.58i)6-s + (−2.52 − 4.37i)7-s − 3.47i·8-s + (8.28 + 3.52i)9-s + (1.21 + 2.10i)10-s − 15.9i·11-s + (−7.79 − 1.58i)12-s + (11.8 + 5.43i)13-s + (−11.2 + 6.50i)14-s + (−2.68 + 0.897i)15-s − 19.5·16-s + (21.5 + 12.4i)17-s + ⋯ |
L(s) = 1 | − 1.28i·2-s + (0.979 + 0.199i)3-s − 0.662·4-s + (−0.163 + 0.0943i)5-s + (0.257 − 1.26i)6-s + (−0.360 − 0.624i)7-s − 0.434i·8-s + (0.920 + 0.391i)9-s + (0.121 + 0.210i)10-s − 1.45i·11-s + (−0.649 − 0.132i)12-s + (0.908 + 0.418i)13-s + (−0.805 + 0.464i)14-s + (−0.178 + 0.0598i)15-s − 1.22·16-s + (1.26 + 0.732i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.214 + 0.976i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.214 + 0.976i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.14915 - 1.42907i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.14915 - 1.42907i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-2.93 - 0.598i)T \) |
| 13 | \( 1 + (-11.8 - 5.43i)T \) |
good | 2 | \( 1 + 2.57iT - 4T^{2} \) |
| 5 | \( 1 + (0.817 - 0.471i)T + (12.5 - 21.6i)T^{2} \) |
| 7 | \( 1 + (2.52 + 4.37i)T + (-24.5 + 42.4i)T^{2} \) |
| 11 | \( 1 + 15.9iT - 121T^{2} \) |
| 17 | \( 1 + (-21.5 - 12.4i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (17.4 - 30.1i)T + (-180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (17.7 + 10.2i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 - 17.8iT - 841T^{2} \) |
| 31 | \( 1 + (-10.2 - 17.7i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (-1.09 - 1.90i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + (-5.08 - 2.93i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (0.939 + 1.62i)T + (-924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (6.18 + 3.56i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + 34.1iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 32.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 + (6.68 + 11.5i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-39.2 + 68.0i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + (121. + 70.0i)T + (2.52e3 + 4.36e3i)T^{2} \) |
| 73 | \( 1 + 89.5T + 5.32e3T^{2} \) |
| 79 | \( 1 + (-28.9 + 50.0i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-38.2 - 22.0i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + (-48.6 + 28.0i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + (-78.3 - 135. i)T + (-4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.00017931659665102001034227687, −11.93850181053301176613686546606, −10.63312625098658668607168244304, −10.22327977354847626098550016611, −8.887086732153804382586827988248, −7.910778266046756332727538003262, −6.25279148600564920407249015950, −3.82305139324331312555005236993, −3.41215157119949485847327566644, −1.51137312334447032293300231862,
2.49323786490711193784124628568, 4.43691277373653046695308666499, 5.99140828075042489037993880204, 7.14958501506048020222809460016, 7.980074907005405998777122462112, 8.970065122371418594414797349128, 9.963982708939818209318173165203, 11.78528233057469270803851223190, 12.88713110991431926838116896398, 13.85219929432921353903589933378